화학공학소재연구정보센터
Macromolecular Research, Vol.19, No.1, 44-52, January, 2011
Synthesis of Highly Exfoliated PS/Na+-MMT Nanocomposites by Suspension Polymerization Using Na+-MMT Clay Platelets as Suspension Stabilizer
E-mail:
Synthesis of highly exfoliated polystyrene/Na+-montmorillonite (PS/Na+-MMT) nanocomposites using Na+-MMT clay platelets as stabilizer during suspension polymerization of styrene monomer is discussed. Scanning electron microscopy (SEM) showed that the presence of a small amount of Na+-MMT during the suspension polymerization of styrene without any suspension stabilizer (PVA) resulted in the formation of spherical PS/Na+-MMT nanocomposites beads with a wide distribution of sizes. The wide angle X-ray diffraction (WAXD) study revealed near delamination/high degree of swelling of Na+-MMT clay platelets in water. The exfoliated clay platelets in water media prior to the polymerization of styrene monomer played the role of a stabilizer by preventing the agglomeration of the monomer droplets. Moreover, polymerization of the styrene monomer with organoclay (o-MMT) in the absence of a PVA stabilizer formed clusters of PS/o-MMT nanocomposites. WAXD and transmission electron microscopy (TEM) revealed a high level of delamination with minor intercalation of silicate layers in the PS/Na+- MMT nanocomposites, whereas intercalated nanocomposites were produced from the styrene/o-MMT polymerization system. The thermal stability of PS was also increased significantly in the PS/Na+-MMT nanocomposite, compared to that of the PS/o-MMT nanocomposites.
  1. Zeng CC, Lee LJ, Macromolecules, 34(12), 4098 (2001)
  2. Manias E, Touny A, Wu L, Strahecker K, Lu B, Chung TC, Chem. Mater., 13, 3516 (2001)
  3. Choi YS, Wang KH, Xu M, Chung IJ, Chem. Mater., 14, 2936 (2002)
  4. Kim YK, Choi YS, Wang KH, Chung IJ, Chem. Mater., 14, 4990 (2002)
  5. Wang D, Zhu J, Yao Q, Wilkie CA, Chem. Mater., 14, 3837 (2002)
  6. Fu X, Qutubuddin S, Polymer, 42(2), 807 (2001)
  7. Okamoto M, Morita S, Kim YH, Kotaka T, Tateyama H, Polymer, 42(3), 1201 (2001)
  8. Li XC, Kang TY, Cho WJ, Lee JK, Ha CS, Macromol. Rapid Commun., 22(16), 1306 (2001)
  9. Uhl FM, Wilkie CA, Polym. Degrad. Stabil., 76, 11 (2002)
  10. Vyazovkin S, Dranca I, Fan XW, Advincula R, J. Phys. Chem. B, 108(31), 11672 (2004)
  11. Kumar S, Jog JP, Natarajan U, J. Appl. Polym. Sci., 89(5), 1186 (2003)
  12. Morgan AB, Harris JD, Polymer, 45(26), 8695 (2004)
  13. Jang BN, Wilkie CA, Polymer, 46(9), 2933 (2005)
  14. Giannelis EP, Adv. Mater., 8(1), 29 (1996)
  15. Gilman JW, Jackson CL, Morgan AB, Harris R, Manias E, Giannelis EP, Hilton D, Phillips SH, Chem. Mater., 12, 1866 (2000)
  16. Fu X, Qutubuddin S, Mater. Lett., 42, 12 (2000)
  17. Zheng X, Jiang D, Wilkie CA, Polym. Degrad. Stabil., 91, 108 (2006)
  18. Uthirakumar P, Song MK, Nah C, Lee YS, Eur. Polym. J., 41, 211 (2005)
  19. Li H, Yu Y, Yang Y, Eur. Polym. J., 41, 2016 (2005)
  20. Samakande A, Hartmann PC, Cloete V, Sanderson RD, Polymer, 48(6), 1490 (2007)
  21. Chigwada G, Jiang DD, Wilkie CA, Thermochim. Acta, 436(1-2), 113 (2005)
  22. Ding C, Guo B, He H, Jia D, Hong H, Eur. Polym. J., 41, 1781 (2005)
  23. Uthirakumar P, Hahn YB, Nahm KS, Lee YS, Eur. Polym. J., 41, 1582 (2005)
  24. Bhiwankar NN, Weiss RA, Polymer, 47(19), 6684 (2006)
  25. Yei DR, Kuo SW, Su YC, Chang FC, Polymer, 45(8), 2633 (2004)
  26. Ramsay JDF, Swanton SW, Bunce J, J. Chem. Soc.-Faraday Trans., 86, 3919 (1990)
  27. Dau J, Lagaly G, Croat. Chem. Acta, 71, 983 (1998)
  28. Rezaie M, Haddadi-Asl V, J. Polym. Res., 17, 309 (2010)
  29. Hensen EJM, Smit B, J. Phys. Chem. B, 106(49), 12664 (2002)
  30. Xu MZ, Choi YS, Kim YK, Wang KH, Chung IJ, Polymer, 44(20), 6387 (2003)
  31. Chang JH, Seo BS, Hwang DH, Polymer, 43(10), 2969 (2002)
  32. Ray SS, Okamoto M, Prog. Polym. Sci, 28, 1539 (2003)
  33. Alexandre M, Dubois P, Mater. Sci. Eng. R-Rep., 28, 1 (2000)
  34. Ding P, Qu BJ, J. Appl. Polym. Sci., 101(6), 3758 (2006)