화학공학소재연구정보센터
Macromolecular Research, Vol.19, No.1, 72-78, January, 2011
Structure Development of PVDF/PMMA/TiO2 Composite Film with Casting Conditions
E-mail:
This study examined the effect of the casting temperature on poly(vinylidene fluoride) (PVDF)/ poly(methyl methacrylate) (PMMA)/titanium dioxide (TiO2) composite films for use as the protective sheet of photovoltaic cells and modules. The structure, crystalline behavior, thermal behavior, surface morphology and color properties of the PVDF/PMMA/TiO2 composite films were investigated by FTIR, XRD, DSC, surface roughness analysis and color spectrometry. The results showed that different crystal structures- PVDF (form I) and PVDF (form II) - could be created in PVDF/PMMA/TiO2 composite films. By melt extruding PVDF/PMMA/TiO2 (65/20/ 15) blends, and casting at different temperatures, it was found that PVDF (form I) was predominant at low casting temperatures. However, with increasing casting temperature, PVDF (form II) dominated the PVDF/PMMA/TiO2 composite films. After aging and PCT (pressure cooker tester), form I came to dominate the PVDF/PMMA/TiO2 composite film and increased the Color - b index of CIELAB color space.
  1. Dohany JE, Encyclopedia of Chemical Technology, John Wiley & Sons, New York, 1994, Vol. 11, p 694.
  2. Lovinger AJ, in Developments in Crystalline Polymers, Bassett GC, Ed., Elsevier Barking, UK, 1982, Vol. 1, p 195.
  3. Dohany JE, Humphrey JS, in Encyclopedia of Polymer Science and Engineering, Mark HF, Bikales NM, Overberger CG, Menges G, Eds., John Wiley & Sons, New York, 1987, Vol. 17, p 532.
  4. Davis GT, Mc Kinney JE, Broadhurst MG, Roth SC, J. Appl. Phys., 49, 4998 (1978)
  5. Nishi T, Polymer, 27, 483 (1978)
  6. Nishi T, Wang TT, Macromolecules, 8, 909 (1975)
  7. Patterson GD, Nishi T, Wang TT, Macromolecules, 9, 603 (1976)
  8. Park WK, Kim JH, Macromol. Res., 12, 206 (2005)
  9. Hirata Y, Kotaka T, Polym. J., 13, 273 (1981)
  10. Alfonso GC, Turturro A, Pizzoli M, Scandola M, Ceccorulli G, J. Polym. Sci. B: Polym. Phys., 27, 1195 (1989)
  11. Nakagawa K, Ishida Y, J. Polym. Sci. B: Polym. Phys., 1, 2153 (1973)
  12. Nishi T, Wang TT, Macromolecules, 8, 909 (1975)
  13. Huang C, Zhang L, J. Appl. Polym. Sci., 92, 5 (2004)
  14. Bernstein RE, Cruz CA, Paul DR, et al., Macromolecules, 10, 681 (1977)
  15. Horibe H, Baba F, Nippon Kagaku Kaishi, 115 (2000)
  16. Park ES, Cho EB, Kim DJ, Macromol. Res., 7, 617 (2007)
  17. Jarray J, Larbi FBC, Vanhulle F, Macromol. Symp., 198, 103 (2003)
  18. Yoshida H, J. Therm. Anal. Calorim., 49, 101 (1997)
  19. Yoshida H, Zhang GZ, Kitamura T, J. Therm. Anal. Calorim., 64, 577 (2001)
  20. Hirata Y, Kotaka T, Polym. J., 13, 273 (1981)
  21. Fang ZP, Xu YZ, J. Mater. Sci. Eng., 21, 279 (2003)
  22. He P, Zhao AC, Macromolecule Aviso., 2, 74 (2001)
  23. Cao XC, Ma J, Shi XH, Ren ZJ, Appl. Surf. Sci., 253(4), 2003 (2006)
  24. Smillie BA, Lenges GM, US Patent 0057392 (2006).
  25. Li W, Li H, Zhang YM, J. Mater. Sci., 44(11), 2977 (2009)
  26. Gregorio R, Cestari M, J. Polym. Sci. B: Polym. Phys., 32(5), 859 (1994)
  27. Kobayashi M, Tashiro K, Tadokoro H, Macromolecules, 8, 158 (1975)
  28. Kazarian SG, Chan KLA, Macromolecules, 37(2), 579 (2004)
  29. Gregorio R, J. Appl. Polym. Sci., 100(4), 3272 (2006)
  30. Narula GK, Pillai PKC, J. Mater. Sci. Lett., 9, 130 (1990)
  31. Matsushige K, Takemura T, J. Polym. Sci. B: Polym. Phys., 16, 921 (1978)
  32. Tashiro K, Kobayashi M, Polym. Prep. Jpn., 35, 906 (1986)
  33. Sasaki H, Yoshida H, Ito E, Heat Measurement Discussion Prep. Jpn., 31, 162 (1995)
  34. Cebe P, Chung SY, J. Mater. Sci., 25, 2367 (1990)