Macromolecular Research, Vol.19, No.4, 326-331, April, 2011
Rheology, Crystallization Behavior under Shear, and Resultant Morphology of PVDF/Multiwalled Carbon Nanotube Composites
E-mail:
Poly(vinylidene fluoride) (PVDF) composites containing multiwalled carbon nanotubes (MWNTs) in the range from 0.1 to 5 wt% were prepared at 220 oC using a melt-mixer. The storage modulus (G') of the PVDF/MWNT composites increased with increasing MWNT content. In particular, there was a significant increase in G' between 1 and 3 wt%. In the Cole-Cole plot, the PVDF composites with up to 1 wt% MWNTs exhibited a single master curve with a slope of 1.25, but the composites containing 3 and 5 wt% MWNTs showed a decreased slope of 1.13 and 1.03, respectively. From the addition of 3 wt% MWNTs, the yield of the PVDF composites was observed in complex viscosity versus complex modulus plot with little dependence on the loss tangent (tan δ) on the frequency was shown. Both the induction time and crystallization time obtained from the G' versus time plot decreased with increasing MWNT content. The promoting effect of the MWNTs on the overall crystallization behavior was more profound at higher crystallization temperatures. Pure PVDF and PVDF with 0.1 wt% MWNTs showed only α phase crystals, but the PVDF composites with high concentrations of MWNTs (1-5 wt%) appeared to contain a mixture of β and γ phases in addition to the α phase.
Keywords:poly(vinylidene fluoride);multiwalled carbon nanotubes;rheology;dynamic crystallization;β and γ phase crystal.
- Chen P, Kim HS, Jin HJ, Macromol. Res., 17(4), 207 (2009)
- Meincke O, Kaempfer D, Weickmann H, Friedrich C, Vathauer M, Warth H, Polymer, 45(3), 739 (2004)
- Choi M, Lim B, Jang J, Macromol. Res., 16(3), 200 (2008)
- Kim BS, Bae SH, Park YH, Kim JH, Macromol. Res., 15(4), 357 (2007)
- Han MS, Lee YK, Kim WN, Lee HS, Joo JS, Park M, Lee HJ, Park CR, Macromol. Res., 14, 863 (2009)
- Sung YT, Han MS, Song KH, Jung JW, Lee HS, Kum CK, Joo J, Kim WN, Polymer, 47(12), 4434 (2006)
- Park WK, Kim JH, Lee SS, Kim J, Lee GW, Park M, Macromol. Res., 13(3), 206 (2005)
- Du FM, Fischer JE, Winey KI, J. Polym. Sci. B: Polym. Phys., 41(24), 3333 (2003)
- Sajkiewicz P, Wasiak A, Goclowski Z, Eur. Polym. J., 35, 423 (1999)
- Takahashi Y, J. Appl. Phys., 97, 4060 (1990)
- Sadeghi F, Ajji A, Polym. Eng. Sci., 49(1), 200 (2009)
- Pramoda KP, Mohamed A, Phang IY, Liu T, Polym. Int., 54, 226 (2005)
- Linares A, Acosta JL, Eur. Polym. J., 31, 615 (1995)
- Chae DW, Kim BC, Compos. Sci. Technol., 67, 1348 (2007)
- Rastogi R, Kaushal R, Tripathi SK, Sharma AL, Kaur I, Bharadwaj LM, J. Colloid Interface Sci., 15, 421 (2008)
- Kim HS, Kang M, Jin HJ, Chin IJ, Choi HJ, Joo J, Mol. Cryst. Liq. Cryst., 464, 15 (2007)
- Geng Y, Liu MY, Li J, Shi XM, Kim JK, Compos. Pt. A-Appl. Sci. Manuf., 39, 1876 (2008)
- Gong X, Liu J, Baskaran S, Voise RD, Young JS, Chem. Mater., 12, 1049 (2000)
- Hong SM, Nam YW, Hwang SS, Chae DW, Mol. Cryst. Liq. Cryst., 464, 195 (2007)
- Aoki H, White JL, Fellers JF, J. Appl. Polym. Sci., 23, 2293 (1979)
- Priya L, Jog JP, J. Polym. Sci. B: Polym. Phys., 40(15), 1682 (2002)
- Gaurav M, Frank TF, Dilhan MK, J. Nanosci. Nanotechnol., 9, 3330 (2009)
- He L, Xu Q, Hua C, Song R, Polym. Compos., 31, 921 (2010)
- Prest WM, Luca DJ, J. Appl. Phys., 46, 4136 (1995)
- Lovinger AJ, Keith HD, Macromolecules, 12, 919 (1979)