화학공학소재연구정보센터
Macromolecular Research, Vol.19, No.4, 379-384, April, 2011
The Properties of Functionalized Graphene Sheet/Poly(ethyl methacrylate) Nanocomposites: The Effects of Preparation Method
E-mail:
Poly(ethyl methacrylate) (PEMA) nanocomposites reinforced with a functionalized graphene sheet (FGS) were prepared by two different methods; a physical mixing method and an in situ method. The results from thermogravimetric analysis and Fourier transform infrared spectroscopy suggested the possibility that PEMA molecules could be grafted on FGS, when ethyl methacrylate (EMA) was polymerized in the presence of FGS by an in situ method with a radical initiator, 2,2'-azobisisobutyronitrile. The enhanced interaction between FGS and matrix PEMA observed from tensile storage modulus and rheological properties also demonstrated the possibility of the graft reaction. However, the differences in morphology and conductivity between the nanocomposites prepared by different preparation methods were marginal. That is, in both nanocomposites prepared by two different methods, FGS dispersed finely in the PEMA matrix to effectively make a conductive channel; 3 wt% FGS improved the conductivity by approximately 107-fold compared to that of pristine PEMA.
  1. Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A, Angew. Chem.-Int. Edit., 48, 7752 (2009)
  2. Park S, Ruoff RS, Nat. Nanotechnol., 4(4), 217 (2009)
  3. Park S, Ruoff RS, Nat. Nanotechnol., 4(4), 217 (2009)
  4. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonou SV, Grigorieva IV, Firso AA, Science, 306, 666 (2004)
  5. Rafiee MA, Rafiee J, Wang Z, Song H, Yu ZZ, Koratkar N, ACS Nano, 3, 3884 (2009)
  6. Shukal A, Kumar R, Mazher J, Balan A, Solid State Commun., 149, 718 (2009)
  7. Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud'homme RK, Car R, Saville DA, Aksay IA, J. Phys. Chem. B, 110(17), 8535 (2006)
  8. Kudin KN, Ozbas B, Schniepp HC, Prud’homme RK, Aksay IA, Car R, Nano Lett., 8, 36 (2008)
  9. Kim MS, Jun JK, Jeong HM, Compos. Sci. Technol., 68, 1919 (2008)
  10. Ning W, Xingxiang Z, Xuechen W, Haihui L, Macromol. Res., 17(5), 285 (2009)
  11. Kim WS, Lee DH, Kim IJ, Son MJ, Kim W, Cho SG, Macromol. Res., 17(10), 776 (2009)
  12. Coleman JN, Khan U, Blau WJ, Gun’ko YK, Carbon, 44, 1624 (2006)
  13. Chen P, Kim HS, Jin HJ, Macromol. Res., 17(4), 207 (2009)
  14. Lim BK, Lee SH, Park JS, Kim SO, Macromol. Res., 17(9), 666 (2009)
  15. Raghu AV, Lee YR, Jeong HM, Shin CM, Macromol. Chem. Phys., 209, 2487 (2008)
  16. Nguyen DA, Lee YR, Raghu AV, Jeong HM, Shin CM, Kim BK, Polym. Int., 58, 412 (2009)
  17. Jang JY, Jeong HM, Kim BK, Macromol. Res., 17(8), 626 (2009)
  18. Verdejo R, Barroso-Bujans F, Rodriguez-Perez MA, de Saja JA, Lopez-Manchado MA, J. Mater. Chem., 18, 2221 (2008)
  19. Kim H, Macosko CW, Macromolecules, 41(9), 3317 (2008)
  20. Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud'homme RK, Brinson LC, Nat. Nanotechnol., 3(6), 327 (2008)
  21. Steurer P, Wissert R, Thomann R, Mulhaupt R, Macromol. Rapid Commun., 30(4-5), 316 (2009)
  22. Geng Y, Liu MY, Li J, Shi XM, Kim JK, Compos. Pt. A-Appl. Sci. Manuf., 39, 1876 (2008)
  23. Velasco-Santos C, Martinez-Hernandez AL, Fisher FT, Ruoff R, Castano VM, Chem. Mater., 15, 4470 (2003)
  24. Yang BX, Shi JH, Pramoda KP, Goh SH, Nanotechnol., 18, 1 (2007)
  25. Zhu J, Peng HQ, Rodriguez-Macias F, Margrave JL, Khabashesku VN, Imam AM, Lozano K, Barrera EV, Adv. Funct. Mater., 14(7), 643 (2004)
  26. Jia Z, Wang Z, Xu C, Liang J, Wei B, Wu D, Zhu S, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 271, 395 (1999)
  27. Park SJ, Cho MS, Lim ST, Choi HJ, Jhon MS, Macromol. Rapid Commun., 24(18), 1070 (2003)
  28. Zhou Z, Wang S, Lu L, Zhang Y, Zhang Y, Combust. Sci. Technol., 67, 1861 (2007)
  29. Kim H, Abdala AA, Macosko CW, Macromolecules, 43(16), 6515 (2010)
  30. Kim H, Miura Y, Macosko CW, Chem. Mater., 22, 3441 (2010)
  31. Salavagione HJ, Gomez MA, Martinez G, Macromolecules, 42(17), 6331 (2009)
  32. Yang YF, Wang J, Zhang J, Liu JC, Yang XL, Zhao HY, Langmuir, 25(19), 11808 (2009)
  33. Jeong HK, Lee YP, Lahaye RJWE, Park MH, An KH, Kim IJ, Yang CW, Park CY, Ruoff RS, Lee YH, J. Am. Chem. Soc., 130(4), 1362 (2008)
  34. Ding W, Eitan A, Fisher FT, Chen X, Dikin DA, Andrews R, Brinson LC, Schadler LS, Ruoff RS, Nano Lett., 3, 1593 (2003)
  35. Chen J, Liu HY, Weimer WA, Halls MD, Waldeck DH, Walker GC, J. Am. Chem. Soc., 124(31), 9034 (2002)
  36. O'Connell MJ, Boul P, Ericson LM, Huffman C, Wang YH, Haroz E, Kuper C, Tour J, Ausman KD, Smalley RE, Chem. Phys. Lett., 342(3-4), 265 (2001)
  37. Socrates G, Infrared Characteristic Group Frequencies, John Wiley & Sons Ltd., Chichester, 1994, p 21, 96, 97, 123.
  38. Smith BC, Infrared Spectral Interpretation: A Systematic Approach, CRC Press,
  39. Mawhinney DB, Naumenko V, Kuznetsova A, Yates JT, Liu J, Smalley RE, J. Am. Chem. Soc., 122(10), 2383 (2000)
  40. Kim BK, Seo JW, Jeong HM, Eur. Polym. J., 39, 85 (2003)
  41. Jeong HM, Jang KH, Cho K, J. Macromol. Sci.-Phys., 42, 1249 (2003)
  42. Jeong HM, Choi MY, Ahn YT, Macromol. Res., 14(3), 312 (2006)
  43. Lan T, Pinnavaia TJ, Chem. Mater., 6, 2216 (1994)
  44. Hyun YH, Lim ST, Choi HJ, Jhon MS, Macromolecules, 34(23), 8084 (2001)
  45. Lim YT, Park OO, Rheol. Acta, 40(3), 220 (2001)
  46. Du FM, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI, Macromolecules, 37(24), 9048 (2004)
  47. Kim H, Macosko CW, Polymer, 50(15), 3797 (2009)
  48. Lee YR, Raghu AV, Jeong HM, Kim BK, Macromol. Chem. Phys., 210, 1247 (2009)
  49. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS, Nature, 442, 282 (2006)
  50. Sung YT, Han MS, Song KH, Jung JW, Lee HS, Kum CK, Joo J, Kim WN, Polymer, 47(12), 4434 (2006)