Polymer(Korea), Vol.35, No.5, 378-384, September, 2011
실크 피브로인/젤라틴 하이브리드 지지체의 제조 및 특성분석
Preparation and Characterization of Silk Fibroin/Gelatin Hybrid Scaffolds
E-mail:,
초록
실크 피브로인은 생체적합성과 비독성 및 비면역 특성을 갖는 생분해성 천연고분자로서, 콜라겐의 가수분해로부터 유래되는 천연물질인 젤라틴을 이용하여 실크 피브로인/젤라틴 지지체를 제조하였다. 지지체의 최적화 조건을 찾기 위하여 실크 피브로인의 양과 젤라틴 및 글루타알데히드의 농도를 다르게 하여 제조하였다. 실크 피브로인/젤라틴 지지체는 SEM과 DSC 및 수분흡수성 평가를 통해 특성분석을 하였으며 세포생존율 및 증식률은 WST 방법을 통해 평가되었다. 이 결과 실크 피브로인 0.3 g 지지체에 8% 젤라틴 및 1% 글루타알데히드를 함유한 지지체에서 세포 부착 및 증식을 위해 가장 적합한 특성을 제공한다고 제안되었다. 결과적으로, 실크 피브로인/젤라틴 지지체는 잠재적인 세포 전달체 및 조직공학을 위한 구조 기반역할을 할 수 있을 것으로 사료된다.
Silk fibroin is a biocompatible and slowly biodegradable natural polymer. This natural polymer has excellent mechanical properties, non-toxicity, and non-immunogenic properties and has been demonstrated to support tissue regeneration. Also, gelatin is a natural material derived from collagen by hydrolysis and has an almost identical composition as that of collagen. Silk fibroin/gelatin scaffolds have been fabricated by using the freeze-drying method. To establish the scaffold manufacturing condition for silk fibroin and gelatin, we made scaffolds with various compositions of gelatin, glutaldehyde and silk fibroin. The silk fibroin/gelatin scaffolds were characterized using SEM, DSC, and water absorption ability tests. The cellular proliferation was evaluated by WST assay. These results suggested that a scaffold containing 8% of gelatin, 1% of glutaldehyde and 0.3 g of silk fibroin provided suitable characterstics for cell adhesion and proliferation. In conclusion, the silk fibroin/gelatin scaffold may serve as a potential cell delivery vehicle and a structural basis for tissue engineering.
- Kim SH, Yun SJ, Jang JW, Kim MS, Khang G, Lee HB, Polym.(Korea), 30(1), 14 (2006)
- Ko YK, Kim SH, Jeong JS, Ha HJ, Yoon SJ, Rhee JM, Kim MS, Lee HB, Khang G, Polym.(Korea), 31(1), 14 (2007)
- Khang G, Lee SJ, Kim MS, Lee HB, “Tissue Engineering", in Webster’s Biomedical Engineering Handbook, Webster S, Editor, John & Wiley Press, NY, 366 (2006)
- Lee JH, Park SJ, Chun HJ, Kim CH, Inter. J. Tissue Reg., 1, 1 (2010)
- Khang G, Rhee JM, Lee JH, Lee I, Lee HB, Macromol. Res., 8, 276 (2000)
- Seal BL, Pterom TC, Panitch A, Mater. Sci. Eng., 34, 147 (2001)
- Moutos FT, Freed LE, Guilak F, Nature Materials., 6, 162 (2007)
- Wong WH, Mooney DJ, Atala A, Synthetic Biodegradable Polymer Scaffolds, Boston, MA, Birkhauser, Chap, 4 (1996)
- Meinel L, Betz O, Fajardo R, Hofmann S, Nazarian A, Cory E, Hilbe M, Cool JM, Langer R, Vunjak-Novakovic G, Merkle HP, Rechenberg B, Kaplan DL, Kirker-Head C, Bone., 39, 4 (2006)
- Uebersaxa L, Mattottia M, Papaloizosb M, Merkle HP, Gander B, Meinel L, Biomaterials., 28, 30 (2007)
- Garcia-Fuentesa M, Meinela AJ, Hilbeb M, Meinel L, Merkle HP, Biomaterials., 30, 28 (2009)
- Ledward D, Philips P, Williams P, “Gelatin”, in Handbook of Hydrocolloid, Boca Raton, CRC Press, 67 (2000)
- Normand V, Muller S, Ravey JC, Parker A, Macromolecules, 33(3), 1063 (2000)
- Kim YJ, Polymer(Korea)., 32, 5 (2008)
- Zhensheng L, Ramay HR, Hauch KD, Xiao D, Zhang M, Biomaterials., 26, 18 (2005)
- Mao JS, Liu HF, Yin YJ, Yao KD, Biomaterials., 24, 1621 (2003)
- Bigi A, Panzavolta S, Roveri N, Biomaterials., 19, 739 (1998)
- Kim HL, Kim SJ, Yoo H, Hong M, Lee D, Khang G, Inter. J. Tissue Reg., 1, 81 (2010)
- Kim HL, Yoo H, Park HJ, Kim YG, Lee D, Kang YS, Khang G, Polym.(Korea), 35(1), 7 (2011)
- Bigi A, Braccia B, Cojazzib G, Panzavolta S, Roveri N, Biomaterials., 19, 24 (1998)
- Choi MS, Han HD, Seong H, Park ES, Chi SC, Shin BC, J. Korean Chem. Soc., 50, 3 (2006)
- Choi YS, Lee SB, Hong SR, Lee YM, Song KW, Park MH, J. Mater. Sci., 12, 67 (2001)
- Choi HK, Hahm JH, Korean J. Seric. Sci., 37, 142 (1995)
- Kweon HY, Lee K, Yeo J, Woo SO. Han SM, Lee YW, Lee JH, Park YH, Korean J. Seric. Sci., 46, 28 (2004)