Polymer(Korea), Vol.35, No.5, 472-477, September, 2011
기능화된 탄소나노튜브의 카르복실산이 전기방사된 폴리아크릴로니트릴 섬유의 물성에 미치는 영향
Effect of Carboxylic Acid Group of Functionalized Carbon Nanotubes on Properties of Electrospun Polyacrylonitrile (PAN) Fibers
E-mail:
초록
다중벽 탄소나노튜브(MWNT)의 표면이 산성기로 처리된 MWNT가 polyacrylonitrile(PAN) 섬유의 열적, 기계적 물성에 미치는 영향을 알아 보고자 질산, 황산으로 처리한 MWNT(O-MWNT)를 디아조늄염 반응을 이용하여 MWNT 표면에 이소프탈산(isophthalic acid)을 추가로 도입하였다. O-MWNT와 비교하여 볼 때 이소프탈산으로 처리된 MWNT(IPA-MWNT)가 극성용매 내에서 더 우수한 분산 안정성을 나타내었으며 이를 호모 PAN과 혼합하여 필름을 제조한 후 공기 중에서 열안정화 반응을 모사하였을 때 호모 PAN과 비교시 발열량이 감소하였다. PAN 공중합체와 IPA-MWNT를 혼합한 용액을 전도성 수조 콜렉터를 이용하여 전기방사를 한 결과 연속상의 배향된 섬유제조가 가능하였다. 1 wt%의 IPA-MWNT를 포함한 연속상의 전기방사된 PAN 섬유는 순수한 PAN 섬유와 비교하여 볼 때 인장강도가 100% 증가하였으며, 탄성률은 160% 증가되었다.
To study the effects of the acid group of functionalized MWNT (multiwalled carbon nanotube) on
the thermal and mechanical properties of polyacrylonitrile(PAN) nanofibers, acid (H2SO4 /HNO3) treated MWNT (O-MWNT) were further functionalized by diazonium salt reaction with 5- aminoisophthalic acid (IPA). Compared to O-MWNT, IPA-MWNT with isophthalic acid group showed a better dispersion stability in polar solvents and IPA-MWNT/PAN composite film displayed lower heat of reaction (ΔH ) than that of homo PAN when stabilized under air atmosphere. The continuous electrospun fibers were prepared using a conductive water bath. PAN fibers containing 1 wt% of IPA-MWNT showed an increase of tensile strength by 100% and tensile modulus by 240% compared to the PAN fibers without IPA-MWNT.
- Seo MK, Min BG, Park SJ, Carbon Lett., 9, 324 (2008)
- Chae HJ, Choi YH, Minus ML, Kumar S, Comp. Sci. Tech., 69, 406 (2009)
- Sreekumar TV, Liu T, Min BG, Guo H, Kumar S, Hauge RH, Smalley RE, Adv. Mater., 16(1), 58 (2004)
- Moreira L, Fulchiron R, Seytre G, Dubois P, Cassagnau P, Macromolecules, 43(3), 1467 (2010)
- Dyke C, Tour J, J. Am. Chem. Soc., 126, 1156 (2003)
- Bahr JL, Tour J, Chem. Mater., 13, 3823 (2001)
- Bajaj P, Sreekumar TV, Sen K, Polymer, 42(4), 1707 (2001)
- Deitzel JM, Kleinmeyer J, Harrks D, Tan NCB, Polymer., 24, 261 (2001)
- Ouyang Q, Cheng L, Wang H, Li K, Polym. Degrad.Stab., 93, 1415 (2008)
- Sreekumar TV, Chandra L, Srivastava A, Kumar S, Carbon., 45, 1114 (2007)
- Liu J, Yue Z, Fong H, Small., 5, 536 (2009)
- Moon SC, Farris RJ, Carbon., 47, 2829 (2009)
- Li D, Wang Y, Xia Y, Nano Lett., 3, 1167 (2003)
- Smit E, Buttner U, Sanderson RD, Polymer, 46(8), 2419 (2005)
- Kim HY, Gil MS, Jung YH, Kim HJ, Lee BS, U.S. Patent 7,354,546 (2008)
- Oh DK, Kim HS, Oh JT, Seo M, Textile Sci. Eng., 46, 98 (2009)
- Yarin AL, Koombhongse S, Reneker DH, J. Appl.Phys., 90, 4836 (2001)
- Li B, Zhang CR, Cao F, Wang SQ, Chn B, Li JS, Mater. Sci. Eng. A., 471, 169 (2007)
- Teo WE, Gopal R, Ramaseshan R, Fujihara K, Ramakrishna S, Polymer, 48(12), 3400 (2007)
- Afifi AM, Nakano S, Yamane H, Kimura Y, Macromol. Mater. Eng., 295, 660 (2010)
- Zhang G, Sun S, Yang D, Dodelet JP, Sacher E, Carbon., 46, 196 (2008)
- Bahr JL, Yang JP, Kosynkin DV, Bronikowski MJ, Smalley RE, Tour JM, J. Am. Chem. Soc., 123(27), 6536 (2001)
- Ellison MD, Gasda PJ, J. Phys. Chem. C., 112, 738 (2008)
- Chae HG, Minus ML, Kumar S, Polymer, 47(10), 3494 (2006)