화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.49, No.5, 530-534, October, 2011
메탄올 산화 카르보닐화에 의한 디메틸카보네이트 합성
Dimethyl Carbonate Synthesis by Methanol Oxidative Carbonylation
E-mail:
초록
회분식 고압반응기에서 메탄올 산화 카르보닐화 방법에 의한 디메틸 카보네이트 제조에 대하여 연구하였다. 다양한 금속의 영향과 구리촉매에 결합된 음이온 및 반응온도, 일산화탄소, 산소의 반응물 몰비, 구리촉매 함유량 등 여러 반응조건들을 검토하였다. 특히 CuCl2·2H2O 촉매가 1.0 g, 150℃ , MeOH/CO/O2=0.2/0.215/0.05(molar ratio) 반응조건에서 메탄올 전환율 65.2%, 선택도 96.6%로 좋은 활성을 보였다. CuCl2는 반응기의 부식을 일으킨다. 이러한 문제점을 개선하기 위하여 DMC 제조에서 담체를 이용한 새로운 촉매시스템을 검토하였다. 여러 종류의 담체중 산성이 큰 제오라이트 Y를 담체로 사용한 경우 가장 활성이 우수하였다. ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometer)를 이용해 반응기에 용출된 Fe 양을 비교하였을 때, 제오라이트를 담체로 사용하여 제조된 구리촉매는 CuCl2-2H2O 촉매를 직접 사용한 경우에 비해 반응기로 용출되는 철의 양은 5% 이하이었다.
The synthesis of dimethyl carbonate by liquid phase oxidative carbonylation of methanol was studied under batch reaction system. Reaction factors such as effect on various metals, anion containing in copper catalyst, temperature, carbon monoxide and oxygen molar ratio and copper content were investigated. In particular CuCl2·2H2O showed the excellent of the methanol conversion 65.2%, DMC selectivity 96.6% reaction condition under 1.0 g, 150℃, MeOH/CO/O2=0.2/0.215/0.05 (molar ratio). CuCl2 led to corrosion of the reactor. Thus, a new catalyst system using supports was investigated to resolve these corrosion problem. Influence on various supports were examined and copper catalyst supported on zeolite Y showed the most excellent activity on the formation of dimethyl carbonate. The amount of Fe dissolved during the reaction using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometer) was compared with catalysts, calcined Cu/zeolite Y showed the lower value below 5% than CuCl2-2H2O.
  1. Richter M, Fait MJG, Eckelt R, Schneider M, Radnik J, Heidemann D, Fricke R, J. Catal., 245(1), 11 (2007)
  2. Keller N, Rebmann G, Keller V, J. Mol. Catal. A-Chem., 35, 1 (2002)
  3. Ono Y, Appl. Catal. A: Gen., 155(2), 133 (1997)
  4. Delledonne D, Rivetti F, Romano U, Appl. Catal. A: Gen., 221(1-2), 241 (2001)
  5. Romano U, Tesel R, Cipriani G, Micucci L, “Method for the Preparation of Esters of Carbonic Acid,” U.S Patent No. 4,218,391 (1980)
  6. Miyazaki H, Shiomi Y, Fujitsu S, Masunaga K, “Process for the Preparation of Oxalic Acid Diesters,” U.S Patent No. 4,384,133 (1983)
  7. Curnutt GL, “Dihydrocarbyl Carbonates Using a Nitrogen-containing Coordination Compound Supported on Activated Carbon,” U.S Patent No. 4,625,044 (1986)
  8. Zhang Y, Bell AT, J. Catal., 255(2), 153 (2008)
  9. Anderson SA, Manthata S, Root TW, Appl. Catal. A: Gen., 280(2), 117 (2005)
  10. Zheng X, Bell AT, J. Phys. Chem. C., 112, 5043 (2008)
  11. Anderson SA, Root TW, J. Mol. Catal. A-Chem., 220(2), 247 (2004)
  12. Zhong L, Ruiyu W, Huayan Z, Kechang X, Fuel., 89, 1339 (2010)