화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.49, No.5, 588-593, October, 2011
Carberry Type 생물반응기에서 암모늄 이온 제거에 의한 돼지유행성설사병 바이러스 백신 생산성 증대
Improvement of Porcine Epidemic Diarrhea Disease Vaccine Productivity by Ammonium Ion Removal in a Carberry Type Bioreactor
E-mail:
초록
미립담체에 고정된 Vero 세포를 이용한 돼지유행성설사병 바이러스 백신의 생산성을 향상시키기 위하여 Phillipsite-Gismondine synthetic zeolite가 투석막에 충진된 Carberry type 생물반응기를 사용하여 암모늄 이온을 선택적으로 흡착하였다. Impeller shaft 및 흡착제 사이에 응집된 미립담체 때문에 세포 성장이 감소하는 것으로 보이나, 포도당 소모량과 젖산 생성량의 비교를 통해 판단 할 때 zeolite는 세포에 독성을 나타내지 않았다. 배양배지로부터 암모늄 이온을 제거함으로써 세포성장 및 바이러스 생산 두 단계 모두가 크게 개선되었다. 바이러스 생산에 있어서는 암모늄 이온 제거에 의해 대조군과 비교하여 바이러스 역가가 2배 이상 향상되었다. 연구결과 zeolite는 암모늄 이온을 효과적으로 흡착제거하여 바이러스 백신의 생산성을 높일 수 있는 이상적인 흡착제임을 확인하였다.
The porcine epidemic diarrhea virus(PEDV) production yield in spinner flask cultures using Vero cells immobilized on microcarriers was improved by the selective adsorption of ammonium ions in a Carberry type bioreactor which was equipped with Phillipsite-Gismondine synthetic zeolite. Though the apparent cell growth seemed to be lower than that of control due to the aggregation of microcarriers between impeller shaft and the adsorbent, zeolite was found to not to be toxic to Vero cell, considering estimated glucose and lactate changes. Zeolite was observed to remove ammonium ions effectively in both steps of cell growth and virus production. In virus production, the virus titer with zeolite was two times higher than that without zeolite. Consequently, zeolite was found to be an ideal adsorbent for higher production of virus vaccine with the effective removal of ammonium ions.
  1. Eagle H, J. Biol. Chem., 214(2), 839 (1955)
  2. Raivio KO, Seegmiller JE, Biochim. Biophys. Acta., 299, 283 (1973)
  3. Dalili M, Sayles GD, Ollis DF, Biotechnol. Bioeng., 36(1), 74 (1990)
  4. Zielke HR, Zielke CL, Ozand PT, Fed. Proc., 43(1), 121 (1984)
  5. Jeong YH, Wang SS, Enzyme Microb. Technol., 17(1), 47 (1995)
  6. Ryan WL, Cardin C, Proc. Soc. Exp. Biol. Med., 123, 27 (1966)
  7. Visek WJ, Kolodny GM, Gross PR, J. Cell Physiol., 80(3), 373 (1972)
  8. Butler M, Spier RE, J. Biotechnol., 1(3-4), 187 (1984)
  9. Jeong YH, Wang SS, Biotechnol. Tech., 6(4), 341 (1992)
  10. Reuveny S, Velez D, Macmillan JD, Miller L, J. Immunol. Methods., 86(1), 53 (1986)
  11. Glacken MW, Fleischaker RJ, Sinskey AJ, Biotechnol. Bioeng., 28(9), 1376 (1986)
  12. Ito M, Mc Limans WF, Cell Biol. Int. Rep., 5(7), 661 (1981)
  13. Commoy-Chevalier MJ, Robert-Gailiot B, Chany C, J. Gen. Virol., 41(3), 541 (1978)
  14. Jensen EM, Liu OC, Proc. Soc. Exp. Biol. Med., 107, 834 (1961)
  15. Eaton MD, Scala AR, Virology., 13, 300 (1961)
  16. Furusawa E, Cutting W, Proc. Soc. Exp. Biol. Med., 111, 71 (1962)
  17. Griffiths JB, J. Cell Sci., 12(2), 617 (1973)
  18. Hosoi S, Mioh H, Anzai C, Sato S, Fujiyoshi N, Cytotechnology., 1(2), 151 (1988)
  19. Butler M, Christie A, Cytotechnology., 15(1-3), 87 (1994)
  20. Genzel Y, Ritter JB, Konig S, Alt R, Reichl U, Biotechnol. Prog., 21(1), 58 (2005)
  21. Hecht V, Bischoff L, Gerth K, Biotechnol. Bioeng., 35(10), 1042 (1990)
  22. Chang YH, Grodzinsky AJ, Wang DI, Biotechnol. Bioeng., 47(3), 308 (1995)
  23. DeBouck P, Pensaert M, Am. J. Vet. Res., 41(2), 219 (1980)
  24. Dea S, Vaillancourt J, Elazhary Y, Martineau GP, Can. Vet. J., 26(3), 108 (1985)
  25. Egberink HF, Ederveen J, Callebaut P, Horzinek MC, Am. J. Vet. Res., 49(8), 1320 (1988)
  26. Hofmann M, Wyler R, J. Clin. Microbiol., 26(11), 22335 (1988)
  27. Kweon CH, Kwon BJ, Jung TS, Kee YJ, Hur DH, Hwang EK, Rhee JC, An SH, Korean. J. Vet. Res., 33(2), 249 (1993)
  28. Park BG, Min YW, Chun GT, Kim IH, Jeong YH, Korean J. Biotechnol. Bioeng., 13(4), 404 (1998)
  29. Park BG, Rhee HI, Chun GT, Kim IH, Jeong YH, Korean J. Biotechnol. Bioeng., 13(4), 411 (1998)