Advanced Functional Materials, Vol.21, No.13, 2412-2422, 2011
Strain Anisotropies and Self-Limiting Capacities in Single-Crystalline 3D Silicon Microstructures: Models for High Energy Density Lithium-Ion Battery Anodes
This study examines the crystallographic anisotropy of strain evolution in model, single-crystalline silicon anode microstructures on electrochemical intercalation of lithium atoms. The 3D hierarchically patterned single-crystalline silicon microstructures used as model anodes were prepared using combined methods of photolithography and anisotropic dry and wet chemical etching. Silicon anodes, which possesses theoretically ten times the energy density by weight compared to conventional carbon anodes, reveal highly anisotropic but more importantly, variably recoverable crystallographic strains during cycling. Model strain-limiting silicon anode architectures that mitigate these impacts are highlighted. By selecting a specific design for the silicon anode microstructure, and exploiting the crystallographic anisotropy of strain evolution upon lithium intercalation to control the direction of volumetric expansion, the volume available for expansion and thus the charging capacity of these structures can be broadly varied. We highlight exemplary design rules for this self-strain-limited charging in which an anode can be variably optimized between capacity and stability. Strain-limited capacities ranging from 677 mAhg(-1) to 2833 mAhg(-1) were achieved by constraining the area available for volumetric expansion via the design rules of the microstructures.