화학공학소재연구정보센터
Inorganic Chemistry, Vol.35, No.24, 7148-7155, 1996
Structures and Stabilities of Ternary Copper(II) Complexes with 3,5-Diiodo-1-Tyrosinate - Weak-Interactions Involving Iodo Groups
Structures and stabilities of the ternary copper(II) complexes Cu(DA)(AA), where AA refers to 3,5-diiodo-L-tyrosinate (I(2)tyr) or L-tyrosinate (Tyr) and DA refers to 1,10-phenanthroline (phen), 2,2’-bipyridine (bpy), 2-(aminomethyl)pyridine (ampy), histamine (hista), or ethylenediamine ten), have been investigated by potentiometric, spectroscopic, and X-ray diffraction methods. The stability constants have been determined by potentiometric titrations at 25 degrees C and ionic strength I = 0.1 M (KNO3). The equilibrium constants K for a hypothetical equilibrium, Cu(DA)(Ala) + Cu(en)(AA) ((K) under left right arrow) Cu(DA)(AA) + Cu(en)(Ala) where Ala refers to L-alanine, have been calculated from the determined overall stability constants of the ternary complexes for estimating the stability enhancement due to the stacking interaction between the aromatic rings in Cu(DA)(AA). Large positive log K values have been obtained for the Cu(DA)(I(2)tyrOH) and Cu(DA)I(2)tyrO(-)) systems (DA = phen or bpy, OH and O- refer to the protonated and deprotonated forms of the phenol moiety, respectively), indicating that the complexes are stabilized by effective stacking. Differences between the log K values for Cu(DA)(I(2)tyr) and Cu(DA)(Tyr) systems indicate that the iodine substituents greatly contribute to the stability enhancement. A distinct circular dichroism (CD) magnitude anomaly was also observed for the systems with large log K value, supporting the existence of the stacking interaction in Cu(DA)(AA).