Applied Biochemistry and Biotechnology, Vol.163, No.1, 71-79, 2011
Efficient Enzymatic Production of the Bacterial Second Messenger c-di-GMP by the Diguanylate Cyclase YdeH from E. coli
Cyclic di-GMP (c-di-GMP) is an almost universal bacterial second messenger involved in the regulation of cell surface-associated traits and the persistence of infections. GGDEF and EAL domain-containing proteins catalyse c-di-GMP synthesis and degradation, respectively. We report the enzymatic large-scale synthesis of c-di-GMP, making use of the GGDEF domain-containing protein YdeH from Escherichia coli. Overexpression and purification of YdeH have been established, and the conditions for c-di-GMP synthesis were optimised. In contrast to the chemical synthesis of c-di-GMP, enzymatic c-di-GMP production is a one-step reaction that can easily be performed with the equipment of a standard biochemical lab. The protocol allows the production of milligram amounts of c-di-GMP within 1 day and paves the way for extensive biochemical and biophysical studies on c-di-GMP-mediated processes.