화학공학소재연구정보센터
Applied Biochemistry and Biotechnology, Vol.163, No.3, 373-382, 2011
Biosynthesis of Ribostamycin Derivatives by Reconstitution and Heterologous Expression of Required Gene Sets
Ribostamycin is a 4,5-disubstituted 2-deoxystreptamine (DOS)-containing aminoglycoside antibiotics and naturally produced by Streptomyces ribosidificus ATCC 21294. It is also an intermediate in the biosynthesis of butirosin and neomycin. In the biosynthesis of ribostamycin, DOS is glycosylated to generate paromamine which is converted to neamine by successive dehydrogenation followed by amination, and finally ribosylation of neamine gives ribostamycin. Here, we report the biosynthesis of 6'-deamino-6'-hydroxyribostamycin (a ribostamycin derivative or pseudoribostamycin) in Streptomyces venezuelae YJ003 by reconstructing gene cassettes for direct ribosylation of paromamine. A trace amount of pseudoribostamycin was detected with ribostamycin in the isolates of ribostamycin cosmid heterologously expressed in Streptomyces lividans TK24. It has also indicated that the ribosyltransferase can accept both neamine and paromamine. Thus, the present in vivo modification of ribostamycin could be useful for the production of hybrid compounds to defend against bacterial resistance to aminoglycosides.