Applied Microbiology and Biotechnology, Vol.90, No.4, 1267-1276, 2011
A novel downstream process for 1,3-propanediol from glycerol-based fermentation
In this paper, a downstream process for purification of 1,3-propanediol from glycerol-based fermentation broth was investigated. The purification of 1,3-propanediol from fermentation broth was achieved by a process combining microfiltration, charcoal treatment, vacuum distillation, and silica gel chromatography. The broth was first filtered through hollow fiber cartridge, wherein 98.7% of biomass was removed. Soluble proteins and other color impurities in the broth were removed by the use of activated charcoal at optimal concentration of 30 gl(-1) where the soluble proteins in the broth decreased to 0.1 gl(-1) (96.0% protein loss). The obtained broth when concentrated by vacuum distillation resulted in the crystallization of inorganic salts. Subsequently, 1,3-propanediol was purified by gradient chromatography using silica gel as a stationary phase and mixture of chloroform and methanol as a mobile phase. Finally, with the optimal flow rate of 10 ml min(-1) and loading amount of 80 ml, the yield of 1,3-propanediol achieved was 89%. The overall yield of 1,3-propanediol using the proposed procedure was 75.47%. The developed method was found to be a simple, rapid, and efficient procedure for the purification of 1,3-propanediol from fermentation broth.