화학공학소재연구정보센터
Applied Surface Science, Vol.257, No.10, 4754-4759, 2011
Removal and recovery of mercury from aqueous solution using magnetic silica nanocomposites
Thiol-functionalized magnetic silica nanocomposite was synthesized and tested for its mercury pick-up capability in aqueous solution. Magnetic property was to be utilized upon the collection of the adsorbents and the recovery adsorbed Hg by subsequent separation process. Cobalt ferrite nanoparticle, the core of magnetic silica nanocomposite, was synthesized using a thermal decomposition method and grown to a particle having an average size of 13 nm. The dispersed nanoparticles were then further arranged into spherical groups using a nanoemulsion method to enhance the reactivity toward magnets followed by tetraethyl orthosilicate coating using a modified Stober method. The pore structure was modified by an additional coating of cetyltrimethylammonium bromide and tetraethyl orthosilicate. Finally, the surface of the magnetic silica nanocomposite was functionalized with thiol group. When tested for mercury adsorption capacity, a sufficiently high Hg adsorption capacity of 19.79mg per g of adsorbent was obtained at room temperature and a pH of 5.5. (C) 2011 Elsevier B. V. All rights reserved.