Applied Surface Science, Vol.257, No.14, 6308-6313, 2011
Ni-doped TiO2 nanotube arrays on shape memory alloy
Self-organized Ni-Ti-O nanotube arrays were fabricated through a direct anodization of NiTi shape memory alloy in glycerol-based electrolyte. The growth of Ni-doped TiO2 nanotube arrays was mainly affected by anodization voltage and temperature. Higher anodization voltage facilitated the growth of uniform nanotube arrays. Large-area open-ended Ni-Ti-O nanotube arrays could form on the surface of the shape memory alloy under a higher anodization temperature. The oxide nanotubes had a gradually changed composition along the growth direction of the nanotube and presented a thermal stability up to 400 degrees C. The nanotubular oxide demonstrated a much better hydrophilic behavior than that of the traditional oxide layer grown on NiTi substrate through air oxidization. The successful fabrication of Ni-doped TiO2 nanotube arrays here makes it feasible to further explore excellent physical and chemical as well as biomedical properties of the nanotube-modified surfaces of the NiTi shape memory alloy. (C) 2011 Elsevier B. V. All rights reserved.