Applied Surface Science, Vol.257, No.21, 9221-9225, 2011
Characterization and activity of visible-light-driven TiO2 photocatalyst codoped with lanthanum and iodine
The novel visible-light-activated La/I/TiO2 nanocomposition photocatalyst was successfully synthesized using precipitation-dipping method, and characterized by X-ray powder diffraction (XRD), the Brunauer-Emmett-Teller (BET) method, transmission electron microscopy (TEM), thermogravimetry-differential scanning calorimetry (TG-DSC) and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). The photocatalytic activity of La/I/TiO2 was evaluated by studying photodegradation of reactive blue 19 as a probe reaction under simulated sunlight irradiation. Photocatalytic experiment results showed that the maximum specific photocatalytic activity of the La/I/TiO2 photocatalyst appeared when the molar ratio of La/Ti was 2.0 at%, calcined at 350 degrees C for 2 h, due to the sample with good crystallization, high BET surface area and small crystal size. Under simulated sunlight irradiation, the degradation of reactive blue 19 aqueous solution reached 98.6% in 80 min, which showed La/I/TiO2 photocatalyst to be much higher photocatalytic activity compared to standard Degussa P25 photocatalyst. The higher visible light activity is due to the codoping of lanthanum and iodine. (C) 2011 Elsevier B.V. All rights reserved.