Biochemical and Biophysical Research Communications, Vol.403, No.3-4, 417-421, 2010
Reexpression of ARHI inhibits tumor growth and angiogenesis and impairs the mTOR/VEGF pathway in hepatocellular carcinoma
The Ras-related tumor suppressor gene aplasia Ras homolog member I (ARHI) is frequently downregulated in many types of cancer, including hepatocellular carcinoma (HCC). In this study, we sought to explore the therapeutic implications of ARHI reconstitution in the treatment of HCC. We generated stable cell lines overexpressing ARHI in Hep3B and SK-Hep1 cells, both of which lack endogenous ARHI. The effects of ARHI reexpression on tumor growth and angiogenesis were assessed. Given the key role of mammalian target of rapamycin (mTOR) signaling in HCC progression, we also tested whether ARHI overexpression affected the mTOR pathway. Forced expression of ARHI resulted in a significant inhibition of the proliferation of both Hep3B and SK-Hep1 cells compared to control cells (P < 0.01). Cell cycle analysis revealed a G0-G1 arrest induced by ARHI reexpression. Moreover, ARHI reexpression significantly retarded Hep3B xenograft growth in vivo, and caused a marked reduction in tumor angiogenesis assessed by CD31-stained microvessel count. Western blot analysis of the xenografts showed that ARHI overexpression substantially reduced the phosphorylation of two mTOR substrates, S6K1 and 4E-BP1, indicative of an inactivation of the mTOR pathway. Accompanying with the mTOR inactivation, the angiogenic factors, hypoxia-inducible factor 1 alpha and vascular endothelial growth factor, were significantly downregulated. These data highlighted an important role for ARHI in controlling HCC growth and angiogenesis, therefore offering a possible therapeutic strategy against this malignancy. (C) 2010 Elsevier Inc. All rights reserved.
Keywords:Aplasia Ras homolog member I (ARHI);Hepatocellular carcinoma (HCC);Growth;Angiogenesis;Mammalian target of rapamycin (mTOR)