화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.409, No.3, 556-561, 2011
Dephosphorylated NPr of the nitrogen PTS regulates lipid A biosynthesis by direct interaction with LpxD
Bacterial phosphoenolpyruvate-dependent phosphotransferase systems (PTS) play multiple roles in addition to sugar transport. Recent studies revealed that enzyme IIA(Ntr) of the nitrogen PTS regulates the intracellular concentration of K+ by direct interaction with TrkA and KdpD. In this study, we show that dephosphorylated NPr of the nitrogen PTS interacts with Escherichia coli LpxD which catalyzes biosynthesis of lipid A of the lipopolysaccharide (LPS) layer. Mutations in lipid A biosynthetic genes such as IpxD are known to confer hypersensitivity to hydrophobic antibiotics such as rifampin; a ptsO (encoding NPr) deletion mutant showed increased resistance to rifampin and increased LPS biosynthesis. Taken together, our data suggest that unphosphorylated NPr decreases lipid A biosynthesis by inhibiting LpxD activity. (C) 2011 Elsevier Inc. All rights reserved.