화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.409, No.4, 693-698, 2011
Prolyl oligopeptidase participates in cell cycle progression in a human neuroblastoma cell line
Prolyl oligopeptidase (POP) is a post-proline cleaving enzyme, which is widely distributed in various organs, with high levels in the brain. In this study, we investigated the effects of a selective POP inhibitor, 3-({4-[2-(E)-styrylphenoxy]butanoyl}-L-4-hydroxyprolyl)-thiazolidine (SUAM-14746), on the growth of NB-1 human neuroblastoma cells. SUAM-14746 treatment for 24-72 h suppresses the growth of NB-1 cells without cell death in a dose-dependent manner (10-60 mu M). Similar suppressive effects were observed with another POP inhibitor benzyloxycarbonyl-thioprolyl-thioprolinal. The SUAM-14746-induced growth inhibition in NB-1 cells was associated with pronounced G(0)/G(1) arrest and reduced levels of phosphorylated retinoblastoma protein (pRb), cyclin E, and cyclin dependent kinase (CDK) 2, and increased levels of the CDK inhibitor p27(kip1) and the tumor suppressor p53. SUAM-14746 also induced transient inhibition of S and G(2)/M phase progression, which was correlated with retardation of the decrease in the levels of cyclins A and B. Moreover, RNAi-mediated knockdown of POP also led to inhibition of NB-1 cell growth and the effect was accompanied by G(0)/G(1) arrest. These results indicate that POP is a part of the machinery that controls the cell cycle. (C) 2011 Elsevier Inc. All rights reserved.