화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.410, No.2, 258-263, 2011
Perfluorooctane sulfonate triggers tight junction "opening" in brain endothelial cells via phosphatidylinositol 3-kinase
Perfluorooctane sulfonate (PFOS), an environmental pollutant, is widely distributed in humans and wildlife. Accumulation of PFOS in the brain and its neurotoxicity has been reported. Whether PFOS has any effect on the blood-brain barrier (BBB) remains unknown. In this study, human brain microvascular endothelial cells (HBMEC), which are the major components of BBB, were treated with PFOS and indicators of endothelial permeability were measured. Disassembly of endothelial tight junction (TJ) and increase of permeability were observed in response to PFOS. The PFOS-induced TJ disassembly in HBMEC was attenuated by pretreatment with PI3K inhibitors, whereas Rho kinase inhibitor had no such effect. Further results demonstrated that PFOS promoted the activation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling in HBMEC. We found that overexpression of PI3K dominant-negative mutant in HBMEC abolished the PFOS-induced TJ disassembly. These data demonstrated that PFOS can trigger the "opening" of tight junction in brain endothelial cells through PI3K signaling pathway. Crown Copyright (C) 2011 Published by Elsevier Inc. All rights reserved.