Biochemical and Biophysical Research Communications, Vol.410, No.3, 440-445, 2011
MiR-192 inhibits nucleotide excision repair by targeting ERCC3 and ERCC4 in HepG2.2.15 cells
Deficient DNA repair capacity is associated with genetic lesions accumulation and susceptibility to carcinogenesis. MicroRNAs (miRNAs) are small non-coding RNAs that regulate various cellular pathways including DNA repair. Here we hypothesized that the existence of HBV products may interfere with cellular nucleotide excision repair (NER) through microRNA-mediated gene regulation. We found that NER was impaired in HepG2.2.15 cells, a stable HBV-expressing cell line, compared with its parental cell line HepG2. Altered miRNA expression profile, in particular the significant upregulation of miR-192, was observed in HepG2.2.15 cells. Additionally. ERCC3 and ERCC4, two key factors implicated in NER, were identified as targets of miR-192 and over-expressing miR-192 significantly inhibited cellular NER. These results indicated that persistent HBV infection might trigger NER impairment in part through upregulation of miR-192, which suppressed the levels of ERCC3 and ERCC4. It provides new insight into the effect of chronic HBV infection on NER and genetic instability in cancer. (C) 2011 Elsevier Inc. All rights reserved.