Biomacromolecules, Vol.12, No.1, 203-209, 2011
Phenotypic Characterization of the Binding of Tetracycline to Human Serum Albumin
Because of the widely usage of the veterinary drug tetracycline (TC), its residue exist extensively in the environment (e.g., animal food, soils, surface water, and groundwater) and can enter human body, being potential harmful. Human serum albumin (HSA) is a major transporter for endogenous and exogenous compounds in vivo. The aim of this study was to examine the interaction of HSA with TC through spectroscopic and molecular modeling methods. The inner filter effect was eliminated to get accurate binding parameters. The site marker competition experiments revealed that TC binds to site II (subdomain IIIA) of HSA mainly through electrostatic interaction, illustrated by the calculated negative Delta H degrees and Delta S degrees. Furthermore, molecular docking was applied to define the specific binding sites, the results of which show that TC mainly interacts with the positively charged amino acid residues Arg 410 and Lys 414 predominately through electrostatic force, in accordance with the conclusion of thermodynamic analysis. The binding of TC can cause conformational and some microenvironmental changes of HSA, revealed by UV-visible absorption, synchronous fluorescence, and circular dichroism (CD) results. The accurate and full basic data in the work is beneficial to clarifying the binding mechanism of TC with HSA in vivo and understanding its effect on protein function during the blood transportation process.