Biomacromolecules, Vol.12, No.4, 1234-1242, 2011
Enzymatically Degradable Thermogelling Poly(alanine-co-leucine)-poloxamer-poly(alanine-co-leucine)
In the search for an enzymatically degradable thermogelling system, we are reporting poly(alanine-co-leucine)-poloxamer-poly(alanine-co-leucine) (PAL-PLX-PAL) aqueous solution. As the temperature increased, the polymer aqueous solution underwent sol-to-gel transition at 20-40 degrees C in a polymer concentration range of 3.0-10.0 wt %. The amphiphilic polymers of PAL-PLX-PAL form micelles in water, where the hydrophobic PALs form a core and the hydrophilic PLXs form a shell of the micelle. FTIR, circular dichroism, and C-13 NMR spectra suggest that the alpha-helical secondary structure of PAL is preserved; however, the molecular motion of the PLX significantly decreases in the sol-to-gel transition range of 20-50 degrees C. The polymer was degraded by proteolytic enzymes such as matrix metalloproteinase and elastase, whereas it was quite stable against cathepsin B, cathepsin C, and chymotrypsin or in phosphate-buffered saline (control). The in situ formed gel in the subcutaneous layer of rats showed a duration of similar to 47 days, and H&E staining study suggests the histocompatibility of the gel in vivo with a marginal inflammation response of capsule formation. A model drug of bovine serum albumin was released over 1 month by the preset-gel injection method. The thermogelling PAL-PLX-PAL can be a promising biocompatible material for minimally invasive injectable drug delivery.