화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.22, No.5, 461-466, October, 2011
불소 도핑 TiO2 염료감응형 태양전지의 전기화학적 특성
Electrochemical Characterization of Fluorine Doped TiO2 Dye-Sensitized Solar Cells
E-mail:
초록
본 연구에서는 염료감응형 태양전지의 효율을 향상시키기 위하여 여러 조건에서 TiO2에 불소를 도핑한 후 이를 이용하여 광전극을 제조하고 그 전기화학적 특성을 평가하였다. 불소 도핑된 TiO2를 이용하여 제조된 염료감응형 태양전지의 에너지 전환 효율을 전류-전압 곡선을 통하여 계산하였다. TiO2 광전극을 불소 도핑함으로써 에너지 전환 효율이 최대 3배 이상 향상되었다. 이와 같은 결과는 불소 도핑 후 에너지 준위가 감소된 TiOF2가 TiO2와 혼재됨으로써 광전극 내에 용이한 전자 전달이 가능하고 이로 인하여 염료 감응형 태양전지의 효율이 향상된 것으로 여겨진다. 이는 IMPS (intensity-modulated photocurrent spectroscopy) 및 IMVS (intensity-modulated photovoltage spectroscopy) 분석에서도 불소가 도핑됨으로써 전자 전달이 빨라지고, 전자 재결합은 느려지는 결과를 확인할 수 있었다.
In this study, the fluorine doped TiO2 was prepared as a photoelectrode in order to improve the efficiency of dye-sensitized solar cells and estimated the electrochemical characterizations. The energy conversion efficiency of the prepared dye-sensitized solar cells using fluorine doped TiO2 was calculated from a current-voltage curve. The efficiency of prepared dye-sensitized solar cells was improved by about maximum three times by F-doping on TiO2. It was suggested that the efficiency of dye-sensitized solar cells was improved by hybrid semiconductors of TiO2/TiOF2 in photoelectrode based on reduced TiOF2 energy level via fluorine doping. It can be confirmed that the electron transport was faster but the electron recombination was slower by doping fluorine on TiO2 in photoelectrode through intensity-modulated photocurrent spectroscopy and intensity-modulated photovoltage spectroscopy analysis.
  1. Li C, Yang X, Chen R, Pan J, Tian H, Zhu H, Wang X, Hagfeldt A, Sun L, Sol. Energy Mater. Sol. Cells., 91, 1863 (2007)
  2. Matsui H, Okada K, Kitamura T, Tanabe N, Sol. Energy Mater. Sol. Cells., 93, 1110 (2009)
  3. Chen J, Li C, Song JL, Sun XW, Lei W, Deng WQ, Appl. Surf. Sci., 255(17), 7508 (2009)
  4. Zhang Y, Shen Y, Gu F, Wu MM, Xie Y, Zhang JC, Appl. Surf. Sci., 256(1), 85 (2009)
  5. Im JS, Lee SK, Lee YS, Appl. Surf. Sci., 257(6), 2164 (2011)
  6. Tian Z, Huang M, Zhao B, Huang H, Feng X, Nie Y, Shen P, Tan S, Dyes Pigment., 87, 181 (2010)
  7. Senevirathna MKI, Pitigala PKDDP, Premalal EVA, Tennakone K, Kumara GRA, Konno A, Sol. Energy Mater. Sol. Cells., 91, 544 (2007)
  8. Qin P, Linder M, Brinck T, Boschloo G, Hagfeldt A, Sun LC, Adv. Mater., 21(29), 2993 (2009)
  9. Tan B, Toman E, Li YG, Wu YY, J. Am. Chem. Soc., 129(14), 4162 (2007)
  10. Chou CS, Lin YJ, Yang RY, Liu KH, Adv. Powder Technol., 22(1), 31 (2011)
  11. Kay A, Gratzel M, Chem. Mater., 14, 2930 (2002)
  12. Park NG, Kang MG, Kim KM, Ryu KS, Chang SH, Kim DK, van de Lagemaat J, Benkstein KD, Frank AJ, Langmuir, 20(10), 4246 (2004)
  13. Guo P, Aegerter MA, Thin Solid Films, 351(1-2), 290 (1999)
  14. Zhang Q, Chou TP, Russo B, Jenekhe SA, Cao G, Angew. Chem. Int. Ed., 47, 2402 (2008)
  15. Kim C, Kim K, Kim HY, Han YS, J. Mater. Chem., 18, 5809 (2008)
  16. Lee S, Noh JH, Han HS, Yim DK, Kim DH, Lee JK, Kim JY, Jung HS, Hong KS, J. Phys. Chem. C., 113, 6878 (2009)
  17. Kang SH, Kim HS, Kim JY, Sung YE, Mater. Chem. Phys., 124(1), 422 (2010)
  18. Kim SJ, Yun SM, Kim H, Lee YS, Carbon Lett., 10, 123 (2009)
  19. Ma T, Akiyama M, Abe E, Imai I, Nano Lett., 5, 2543 (2005)
  20. Tian H, Hu L, Zhang C, Chen S, Sheng J, Mo L, Liu W, Dai S, J. Mater. Chem., 21, 863 (2011)
  21. Li D, Haneda H, Labhsetwar NK, Hishita S, Ohashi N, Chem. Phys. Lett., 401(4-6), 579 (2005)
  22. He J, Cai QZ, Ji YG, Luo HH, Li DJ, Yu B, J. Alloy. Compd., 482, 476 (2009)
  23. Im JS, Park IJ, In SJ, Kim T, Lee YS, J. Fluor. Chem., 130, 1111 (2009)
  24. Jorge MV, Claudio FR, Sergio C, Pedro B, Victor HL, Mater. Charact., 58, 233 (2007)
  25. Lv K, Yu J, Cui L, Chen S, Li M, J. Alloy. Compd., 509, 4557 (2011)
  26. Wei S, Peng B, Chai L, Liu Y, Li Z, Trans. Nonferrous Met. Soc. China., 18, 1145 (2008)
  27. Atul S, Takashi K, Akira T, Carbon., 38, 1977 (2000)
  28. Burton AW, Ong K, Rea T, Chan IY, Microporous Mesoporous Mat., 117, 75 (2009)
  29. Li D, Haneda H, Hishita S, Ohashi N, Labhsetwar NK, J. Fluor. Chem., 1126, 69 (2005)
  30. Wu JH, Xie GX, Lin JM, Lan Z, Huang ML, Huang YF, J. Power Sources, 195(19), 6937 (2010)
  31. Lee Y, Kang M, Mater. Chem. Phys., 122(1), 284 (2010)
  32. Lewis LN, Spivack JL, Gasaway S, Williams ED, Gui JY, Manivannan V, Siclovan OP, Sol. Energy Mater. Sol. Cells., 90, 1041 (2006)
  33. Kruger J, Plass R, Gratzel M, Cameron PJ, Peter LM, J. Phys. Chem. B, 107(31), 7536 (2003)
  34. Peter LM, Wijayantha KGU, Electrochim. Acta, 45(28), 4543 (2000)
  35. Waita SM, Aduda BO, Mwabora JM, Granqvist CG, Lindquist SE, Niklasson GA, Hafeldt A, Boschloo G, J. Electroanal. Chem., 605(2), 151 (2007)
  36. Guo W, Wu L, Chen Z, Ma T, Boschloo G, Hagfeldt A, J. Photochem. Photobiol. A-Chem., 219, 180 (2011)
  37. Lu L, Li R, Fan K, Peng T, Sol. Energy., 84, 844 (2010)
  38. Dupuy L, Haller S, Rousset J, Donsanti F, Guillemoles JF, Lincot D, Decker F, Electrochem. Commun., 12, 697 (2010)