Applied Chemistry for Engineering, Vol.22, No.5, 514-517, October, 2011
마그네슘 금속으로부터의 산화마그네슘 나노와이어 제조
Preparation of Magnesium Oxide Nanowires from a Magnesium Foil
E-mail:
초록
본 실험에서는 옥살산과 알코올계 용매를 사용하여 마그네슘 호일의 화학적 식각에 의해서 마그네슘 옥살레이트(Magnesium oxalate) 나노구조를 제조하였다. 알코올계 용매 중 에탄올 용매에서 마그네슘 옥살레이트 나노와이어를 얻을 수 있었다. 시간에 따른 나노와이어의 형성 과정을 살펴보았고, FE-SEM을 통하여 형상을 살펴보았다. TGA 분석을 통하여 열처리 조건을 결정하였다. 열처리를 통하여 마그네슘 옥살레이트 나노와이어에서 산화마그네슘(MgO) 나노와이어로 전환시켰고, 이를 FE-SEM과 FT-IR을 통하여 확인하였다.
Herein, we fabricated magnesium oxalate nanostructures by chemical etching of a magnesium foil in alcoholic solvents containing acidic media. Interestingly, we could obtain magnesium oxalate nanowires in ethanolic oxalic acid. Growth mechanism for magnesium oxalate nanowires was investigated in terms of etching time. Annealing conditions were determined from TGA results. Magnesium oxalate nanowires were converted to magnesium oxide nanowires by thermal treatment and the magnesium oxide nanowires were examined by FE-SEM and FT-IR measurement.
- Hahn R, Brunner JG, Kunze J, Schmuki P, Virtanen S, Electrochem. Commun., 10, 288 (2008)
- Shen S, Chow PS, Chen F, Tan RBH, Chem. Pharm. Bull., 55, 985 (2007)
- Haraguchi F, Inoue K, Toshima N, Kobayashi S, Takatoh K, J. Appl. Phys., 46, 796 (2007)
- Boeuf JP, J. Phys. D: Appl. Phys., 36, 53 (2003)
- Liu SW, Weaver J, Yuan Z, Donner W, Chen CL, Jiang JC, Meletis EI, Chang W, Kirchoefer SW, Horwitz J, Bhalla A, Appl. Phys. Lett., 87, 142905 (2005)
- Phillips JM, J. Appl. Phys., 79, 1829 (1996)
- Gu Y, Chen D, Jiao X, Liu F, J. Mater. Chem., 17, 1769 (2007)
- Liang SH, Gay ID, J. Catal., 101, 293 (1986)
- Tsuji H, Yagi F, Hattori H, Kita H, J. Catal., 148(2), 759 (1994)
- Fang H, Hu B, Wang L, Lu R, Yang C, Front. Chem. China., 3, 193 (2008)
- Ding Y, Zhang G, Wu H, Hai B, Wang L, Qian Y, Chem. Mater., 13, 435 (2001)
- Niu H, Yang Q, Tang K, Xie Y, J. Nanoparticle Res., 8, 881 (2006)
- El-Shall M, Slack W, Vann W, Kane D, Hanley D, J. Phys. Chem., 98, 3067 (1998)
- Matthews JS, Just O, Obi-Johnson B, Rees WS Jr.,, Chem. Vapour Deposition., 6, 129 (2000)
- Khairallah F, Glisenti A, J. Mol. Catal. A-Chem., 274(1-2), 137 (2007)
- Makhluf S, Dror R, Nitzan Y, Abramovich Y, Jelinek R, Gedanken A, Adv. Funct. Mater., 15(10), 1708 (2005)
- Brunner JG, Hahn R, Kunze J, Virtanen S, J. Electrochem. Soc., 156(2), C62 (2009)
- Aramendia MA, Borau V, Jimenz C, Marinas JM, Porras A, Urbano FJ, J. Mater. Chem., 6, 1943 (1996)
- He Y, Wang J, Deng H, Yin Q, Gong J, Ceram. Int., 34, 1399 (2008)
- Yan CL, Sun CT, Shi Y, Xue DF, J. Cryst. Growth, 310(7-9), 1708 (2008)
- Jeevanandam P, Mulukutla RS, Yang Z, Kwen H, Klabunde KJ, Chem. Mater., 19, 5395 (2007)
- Yan Y, Zhou L, Zhang J, Zeng H, Zhang Y, Zhang L, J. Phys. Chem. C., 112, 10412 (2008)
- Zhou ZZ, Sun QH, Hu ZS, Deng YL, J. Phys. Chem. B, 110(27), 13387 (2006)
- Kim SJ, Kim YT, Choi J, J. Cryst. Growth, 312(20), 2946 (2010)
- Jung I, Choi J, Tak Y, J. Mater. Chem., 20, 6164 (2010)
- Delle Site L, Alavi A, Lynden-Bell RM, J. Chem. Phys., 113(8), 3344 (2000)
- Nakamoto K, Infrared Spectra of Inorganic and Coordination Compounds, p. 206, Wiley, London.
- Sharma M, Jeevanandam P, J. Alloys Compounds., 509, 7881 (2011)