화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.29, No.1, 72-76, January, 2012
Chitosan microgel: Effect of cross-linking density on pH-dependent release
E-mail:
Chitosan microgels were prepared by a spray-drying method using glutaraldehyde (GA) as a cross-linker. Two kinds of microgels, so-called soft microgel and hard microgel, were prepared using a chitosan to GA ratio of 1 : 0.08, and 1 : 0.67, respectively. The surfaces of hard microgels were more even that those of soft microgels. The swelling ratio, a measure of degree of swelling, of the soft microgel was pH-sensitive, and it decreased from 1,765% to 1,230%, when the pH increased from 4.0 to 9.0. The deprotonation of amino groups of chitosan could account for the decrease in swelling ratio. The swelling ratio of hard microgels was almost invariable in response to pH change (4.0 to 9.0), and it was much less than that of soft microgels, possibly due to the high cross-linking density. The degree of release from the soft microgels decreased from 65% to 12% when the pH of medium increased from 4.0 to 6.0. FITC-dextran would readily diffuse out of the microgel, possibly due to the larger meshes of the microgels in a strong acidic condition (e.g., pH 4.0). However, the degree of release increased from 12% to 82% when the pH of medium increased from 6.0 to 9.0. In this pH range, the fluorescence dye is believed to be released mainly by a squeezing-out.
  1. Xu DY, Li GJ, Liao ZF, He XH, Polym. Bull., 62(2), 183 (2009)
  2. Risbud MV, Hardikar AA, Bhat SV, Bhonde RR, J. Control Release., 68, 23 (2000)
  3. Soppimath KS, Kulkarni AR, Aminabhavi TM, J. Control Release., 75, 331 (2001)
  4. Kang MK, Kim JC, Colloid Polym. Sci., 288, 265 (2010)
  5. Kim YH, Bae YH, Kim SW, J. Control Release., 28, 143 (1994)
  6. Feil H, Bae YH, Kim SW, Macromolecules., 25, 5528 (1992)
  7. Gutowska A, Bae YH, Feijen J, Kim SW, J. Control Release., 22, 95 (1992)
  8. Alvarez-Lorenzo C, Bromberg L, Concheiro A, Photochem. Photobiol., 85, 848 (2009)
  9. Yui N, Okano T, Skurai Y, J. Control Release., 26, 141 (1993)
  10. Qiu Y, Park K, Adv. Drug Deliv. Rev., 53, 321 (2001)
  11. Murdan SJ, J. Control Release., 92, 1 (2003)
  12. Li H, Yuan Z, Lam KY, Lee HP, Chen J, Hanes J, Fu J, Biosens. Bioelectron., 19, 1097 (2004)
  13. Connor J, Huang LJ, Cell Biol., 101, 582 (1985)
  14. Drummond DC, Zignani M, Leroux JC, Prog. Lipid Res., 39, 409 (2000)
  15. Chu CJ, Dijkstra J, Lai MZ, Hong K, Szoka FC, Pharm. Res., 7, 824 (1990)
  16. Huguet ML, Neufeld RJ, Dellacherie E, Process Biochem., 31(4), 347 (1996)
  17. Silva CM, Ribeiro AJ, Figueiredo M, Ferreira D, Veiga F, AAPS J., 7, E903 (2005)
  18. Simoes S, Moreira JN, Fonseca C, Duzgune N, Lima MCP, Adv. Drug Deliv. Rev., 56, 947 (2004)
  19. Jo SM, Lee HY, Kim JC, Int. J. Biol. Macromol., 45, 421 (2009)
  20. Pelton R, Adv. Colloid Interface Sci., 85, 1 (2000)
  21. Oh JK, Lee DI, Park JM, Prog. Polym. Sci., 34, 1261 (2009)
  22. Zhang H, Mardyani S, Chan WCW, Kumacheva E, Biomacromolecules, 7(5), 1568 (2006)
  23. Mansouri S, Lavigne P, Corsi K, Benderdour M, Beaumont E, Fernandes JC, Eur. J. Pharm. Biopharm., 57, 1 (2004)
  24. Thanou M, Verhoef JC, Junginger HE, Adv. Drug Deliv. Rev., 52, 117 (2001)
  25. Zhang L, Jin Y, Liu HQ, Du YM, J. Appl. Polym. Sci., 82(3), 584 (2001)
  26. Xue ZX, Yang GP, Zhang ZP, He BL, React. Funct.Polym., 66, 893 (2006)
  27. Oh JK, Lee DI, Park JM, Prog. Polym. Sci., 34, 1261 (2009)
  28. Rao BS, Murthy KVR, Int. J. Pharm., 231, 97 (2002)
  29. Williams DR, Coord. Chem. Rev., 151, 161 (1996)