화학공학소재연구정보센터
Clean Technology, Vol.17, No.3, 225-230, September, 2011
다양한 귀금속 촉매를 이용한 NOx의 탄화수소 선택적촉매환원 반응 특성에 관한 연구
A Study of the Reaction Characteristics on Hydrocarbon Selective Catalytic Reduction of NOx Over Various Noble Metal Catalysts
E-mail:
초록
다양한 귀금속 촉매를 이용한 hydrocarbon selective catalytic reduction 반응특성을 조사하였다. 가장 우수한 활성금속은 Pt, 지지체는 활성금속과 지지체간 강한 상호작용에 의하여 CeO2, TiO2였으며, NOx 전환율은 약 55%를 나타내었다. 활성금속으로서 Pd, Rh, Ag 촉매들은 20% 미만의 전환율을 보였으며, 지지체로서 SiO2, ZrO2 또한 다른 지지체들보다 저조한 활성을 나타내었다. 조업조건에 따른 촉매의 성능을 조사하기 위하여 환원제의 종류, 양, 산소농도, 공간속도에 따른 실험을 수행하였다. 환원제로서 메탄이 프로판보다 우수함을 확인하였고, 메탄/질소산화물 비가 증가할수록 성능이 우수하였으며, 산소농도가 증가할수록, 그리고 공간속도가 감소할수록 촉매의 성능은 증가함을 확인할 수 있었다.
Characteristics of hydrocarbon selective catalytic reduction of NOx using various noble metal catalysts were investigated. The best active metal is Pt, supports are CeO2 and TiO2 by strong interactions between active metals, and 55% of conversion rate of NOx is shown. Pd, Rh and Ag catalysts presented a conversion of less than 20% as active metals, and supports also showed the poor activity compared to SiO2 and ZrO2. Experiments were performed with different types of reducing agents, amount, concentration of oxygen and space velocity in order to investigate the performance of catalysts according to operating conditions. The results confirm that the methane is better than propane as a reducing agent, and as the ratio of methane/nitrogen oxide increases, the catalytic activity increased, as the concentration of oxygen increases and space velocity decreases, the performance of catalysts increased.
  1. Lee JW, Jeon HJ, Hong SC, Clean Technol., 15(2), 130 (2009)
  2. Ministry of Environment Republic of Korea, Environmental Statistics Yearbook in 2002 (2003)
  3. Kim JI, Chang IG, Seon CY, Clean Technol., 9(2), 71 (2003)
  4. Kim SS, Choi HJ, Hong SC, Appl. Chem. Eng., 21(1), 18 (2010)
  5. Kim SS, Hong SC, Appl. Chem. Eng., 21(4), 391 (2010)
  6. Tabata T, Kokitsu M, Okada O, Appl. Catal. B: Environ., 6(3), 225 (1995)
  7. Sadykov VA, Baron SL, Matyshak VA, Alikina GM, Bunina RV, Rozovskii AY, Lunin VV, Lunina EV, Kharlanov AN, Ivanova AS, Veniaminov SA, Catal. Lett., 37(3-4), 157 (1996)
  8. Iwamoto M, Hamada H, Catal. today., 10, 57 (1991)
  9. Lee JY, Hong SC, Appl. Chem. Eng., 13(5), 450 (2002)
  10. Li ZJ, Flytzanistephanopoulos M, Ind. Eng. Chem. Res., 36(1), 187 (1997)
  11. Li YJ, Armor JN, Appl. Catal. B: Environ., 3(4), 275 (1994)
  12. Li YJ, Armor JN, Appl. Catal. B: Environ., 13(2), 131 (1997)
  13. Campa MC, Derossi S, Ferraris G, Indovina V, Appl. Catal. B: Environ., 8(3), 315 (1996)
  14. Maisuls SE, Seshan K, Feast S, Lercher JA, Appl. Catal. B: Environ., 29(1), 69 (2001)
  15. Descorme C, Gelin P, Lecuyer C, Primet M, J. Catal., 177(2), 352 (1998)
  16. Fritz A, Pitchon V, Appl. Catal. B: Environ., 13(1), 1 (1997)
  17. Hahn MS, Yun CY, Yi J, Clean Technol., 11(3), 123 (2005)
  18. Kim SS, Lee SJ, Hong SC, Chem. Eng. J., 169, 173 (2011)
  19. Gonza´ lez ID, Navarro RM, Wen W, Marinkovic N, Rodriguez JA, Rosa F, Fierro JLG, Catal. Today., 149, 372 (2010)
  20. Bueno-Lopez A, Such-Basanez I, de Lecea CSM, J. Catal., 244(1), 102 (2006)
  21. Panagiotopoulou P, Kondarides DI, Appl. Catal. B: Environ., 101(3-4), 738 (2011)
  22. Hightower JW, Van Leirsburg DA, Kimilish RL, Larson JG (Eds.), The Catalytic Chemistry of Nitrogen Oxides, Plenum Press, New York (1975)
  23. Gervasini A, Carniti P, Ragaini V, Appl. Catal. B: Environ., 22(3), 201 (1999)
  24. Burch R, Watling TC, Catal. Lett., 37(1-2), 51 (1996)
  25. Yentekakis IV, Lambert RM, Tikhov MS, Konsolakis M, Kiousis V, J. Catal., 176(1), 82 (1998)
  26. Shimizu K, Satsuma A, Hattori T, Appl. Catal. B: Environ., 25(4), 239 (2000)
  27. Li Y, Armor J, Appl. Catal.B: Environ., 1, L31 (1992)
  28. Pinaeva LG, Sadovskaya EM, Suknev AP, Goncharov VB, Sadykov VA, Balzhinimaev BS, Decamp T, Mirodatos C, Chem. Eng. Sci., 54(20), 4327 (1999)