화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.17, No.4, 723-726, July, 2011
Water-gas shift coupling with methanation over MOx modified nanorod-NiO/γ-Al2O3 catalysts
E-mail:
Water-gas shift coupling with methanation was carried out over metal oxide modified nanorod-NiO/γ-Al2O3 catalysts prepared by grind-mixing method in a continuous flow type fixed-bed reactor. The effects of promoter type, Co3O4 content, and reaction pressure were investigated. From the experimental results, Co3O4 modified nanorod-NiO/γ-Al2O3 catalyst exhibited better activity than NiO-CuO/γ-Al2O3 and NiO-Fe2O3/γ-Al2O3 with molar ratio of CO/H2/H2O = 3:1:1 at 593 K and atmospheric pressure. The addition of 10 wt%Co3O4 to nanorod-NiO/γ-Al2O3 catalyst was optimum. The CO conversion of 50 wt%NiO-10 wt%Co3O4/γ-Al2O3 catalyst was 7.8% and the CH4 selectivity reached 83.2%. The NiO-MOx/g-Al2O3 catalysts were analyzed by X-ray diffraction, temperature programmed reduction and thermogravimetry techniques.
  1. Wall TF, Liu G, Wu H, Roberts DG, Benfell KE, Gupta S, Lucas JA, Harris DJ, Prog. Energy Combust. Sci., 28, 405 (2002)
  2. Huang JJ, Fang YT, Chen HS, Wang Y, Energy Fuels, 17(6), 1474 (2003)
  3. Mao XQ, Guo XR, Chang YG, Peng YD, Energy Policy, 33(3), 307 (2005)
  4. Zhao W, Wang H, Qian K, Petrol. Explor. Dev., 36, 280 (2009)
  5. Sabatier P, Senderens JB, Acad CR, Sci. Paris., 134, 514 (1902)
  6. Kustov AL, Frey AM, Larsen KE, Johannessen T, Norskov JK, Christensen CH, Appl. Catal. A: Gen., 320, 98 (2007)
  7. Rostrup-Nielsen JR, Pedersen K, Sehested J, Appl. Catal. A: Gen., 330, 134 (2007)
  8. Liu Q, Dong X, Mo X, Lin W, J. Nat. Gas Chem., 17, 268 (2008)
  9. Luo L, Li S, Deng G, J. Fuel Chem. Technol., 29, 302 (2001)
  10. Takenaka S, Shimizu T, Otsuka K, Int. J. Hydrogen Energy., 29, 1065 (2004)
  11. Men C, Coal Chem. Ind., 1, 16 (2000)
  12. Panagiotopoulou P, Kondarides DI, Verykios XE, Appl. Catal. A: Gen., 344(1-2), 45 (2008)
  13. Kuijpers EGM, Tjepkema RB, Geus JW, J. Mol. Catal., 25, 241 (1984)
  14. Agrawal PK, Fitzharris WD, Katzer JR, Stud. Surf. Sci. Catal., 6, 179 (1980)
  15. Gardner DC, Bartholomew CH, Ind. Eng. Chem. Prod. Res. Dev., 20, 80 (1981)
  16. Rabo JA, Elek LF, Francis JN, Stud. Surf. Sci. Catal., 7, 490 (1981)
  17. Kuijpers EGM, Geus JW, Fuel., 62, 158 (1983)
  18. Kang SH, Bae JW, Sai Prasad PS, Oh JH, Jun KW, Song SL, Min KS, J. Ind. Eng. Chem., 15(5), 665 (2009)
  19. Newsome DS, Catal. Rev. Sci. Eng., 21, 275 (1980)
  20. Ma S, Tan Y, Zhang Q, Han Y, Nat. Gas Chem. Ind., 34, 1 (2009)
  21. Le Chatelier H, Ann. Mines., 13, 157 (1888)
  22. Zhai X, Shamoto J, Xie H, Tan Y, Han Y, Tsubaki N, Fuel., 87, 430 (2008)
  23. Park S, Kim H, Choi B, J. Ind. Eng. Chem., 16(5), 734 (2010)
  24. Li KZ, Wang H, Wei YG, Yan DX, Chem. Eng. J., 156(3), 512 (2010)
  25. Ding J, Luo L, J. Mol. Catal. Chin., 23, 48 (2009)
  26. Wang X, Pan X, Lin R, Kou S, Zou W, Ma J, Acta. Phys. Chim. Sin., 26, 1296 (2010)
  27. Shang R, Sun W, Wang Y, Jin G, Guo X, Catal. Commun., 9, 2103 (2008)
  28. Li Y, Xie XW, Liu JL, Cai M, Rogers J, Shen WJ, Chem. Eng. J., 136(2-3), 398 (2008)
  29. Agrell J, Hasselbo K, Jansson K, Jaras SG, Boutonnet M, Appl. Catal. A: Gen., 211(2), 239 (2001)
  30. Wu S, Chin. J. Catal., 13, 117 (1992)
  31. Wu S, Chin. J. Catal., 14, 239 (1993)
  32. Jiang HT, Li HQ, Xu HB, Zhang Y, Fuel Process. Technol., 88(10), 988 (2007)