Journal of Industrial and Engineering Chemistry, Vol.17, No.4, 723-726, July, 2011
Water-gas shift coupling with methanation over MOx modified nanorod-NiO/γ-Al2O3 catalysts
E-mail:
Water-gas shift coupling with methanation was carried out over metal oxide modified nanorod-NiO/γ-Al2O3 catalysts prepared by grind-mixing method in a continuous flow type fixed-bed reactor. The effects of promoter type, Co3O4 content, and reaction pressure were investigated. From the experimental results, Co3O4 modified nanorod-NiO/γ-Al2O3 catalyst exhibited better activity than NiO-CuO/γ-Al2O3 and NiO-Fe2O3/γ-Al2O3 with molar ratio of CO/H2/H2O = 3:1:1 at 593 K and atmospheric pressure. The addition of 10 wt%Co3O4 to nanorod-NiO/γ-Al2O3 catalyst was optimum. The CO conversion of 50 wt%NiO-10 wt%Co3O4/γ-Al2O3 catalyst was 7.8% and the CH4 selectivity reached 83.2%. The NiO-MOx/g-Al2O3 catalysts were analyzed by X-ray diffraction, temperature programmed reduction and thermogravimetry techniques.
- Wall TF, Liu G, Wu H, Roberts DG, Benfell KE, Gupta S, Lucas JA, Harris DJ, Prog. Energy Combust. Sci., 28, 405 (2002)
- Huang JJ, Fang YT, Chen HS, Wang Y, Energy Fuels, 17(6), 1474 (2003)
- Mao XQ, Guo XR, Chang YG, Peng YD, Energy Policy, 33(3), 307 (2005)
- Zhao W, Wang H, Qian K, Petrol. Explor. Dev., 36, 280 (2009)
- Sabatier P, Senderens JB, Acad CR, Sci. Paris., 134, 514 (1902)
- Kustov AL, Frey AM, Larsen KE, Johannessen T, Norskov JK, Christensen CH, Appl. Catal. A: Gen., 320, 98 (2007)
- Rostrup-Nielsen JR, Pedersen K, Sehested J, Appl. Catal. A: Gen., 330, 134 (2007)
- Liu Q, Dong X, Mo X, Lin W, J. Nat. Gas Chem., 17, 268 (2008)
- Luo L, Li S, Deng G, J. Fuel Chem. Technol., 29, 302 (2001)
- Takenaka S, Shimizu T, Otsuka K, Int. J. Hydrogen Energy., 29, 1065 (2004)
- Men C, Coal Chem. Ind., 1, 16 (2000)
- Panagiotopoulou P, Kondarides DI, Verykios XE, Appl. Catal. A: Gen., 344(1-2), 45 (2008)
- Kuijpers EGM, Tjepkema RB, Geus JW, J. Mol. Catal., 25, 241 (1984)
- Agrawal PK, Fitzharris WD, Katzer JR, Stud. Surf. Sci. Catal., 6, 179 (1980)
- Gardner DC, Bartholomew CH, Ind. Eng. Chem. Prod. Res. Dev., 20, 80 (1981)
- Rabo JA, Elek LF, Francis JN, Stud. Surf. Sci. Catal., 7, 490 (1981)
- Kuijpers EGM, Geus JW, Fuel., 62, 158 (1983)
- Kang SH, Bae JW, Sai Prasad PS, Oh JH, Jun KW, Song SL, Min KS, J. Ind. Eng. Chem., 15(5), 665 (2009)
- Newsome DS, Catal. Rev. Sci. Eng., 21, 275 (1980)
- Ma S, Tan Y, Zhang Q, Han Y, Nat. Gas Chem. Ind., 34, 1 (2009)
- Le Chatelier H, Ann. Mines., 13, 157 (1888)
- Zhai X, Shamoto J, Xie H, Tan Y, Han Y, Tsubaki N, Fuel., 87, 430 (2008)
- Park S, Kim H, Choi B, J. Ind. Eng. Chem., 16(5), 734 (2010)
- Li KZ, Wang H, Wei YG, Yan DX, Chem. Eng. J., 156(3), 512 (2010)
- Ding J, Luo L, J. Mol. Catal. Chin., 23, 48 (2009)
- Wang X, Pan X, Lin R, Kou S, Zou W, Ma J, Acta. Phys. Chim. Sin., 26, 1296 (2010)
- Shang R, Sun W, Wang Y, Jin G, Guo X, Catal. Commun., 9, 2103 (2008)
- Li Y, Xie XW, Liu JL, Cai M, Rogers J, Shen WJ, Chem. Eng. J., 136(2-3), 398 (2008)
- Agrell J, Hasselbo K, Jansson K, Jaras SG, Boutonnet M, Appl. Catal. A: Gen., 211(2), 239 (2001)
- Wu S, Chin. J. Catal., 13, 117 (1992)
- Wu S, Chin. J. Catal., 14, 239 (1993)
- Jiang HT, Li HQ, Xu HB, Zhang Y, Fuel Process. Technol., 88(10), 988 (2007)