Journal of Industrial and Engineering Chemistry, Vol.17, No.4, 767-776, July, 2011
Comparative model analysis of the performance of tube fitted bulk monolithic catalyst with conventional pellet shapes for natural gas reforming
E-mail:
A novel catalyst shape for reforming reaction, as an intraparticle diffusion limited-reaction, using bulk monolithic catalyst (BMC), the so-called tube fitted bulk monolithic catalyst (TFBMC), instead of conventional pellets is presented. A detailed analysis of the transport phenomena and proper models are introduced. The model is applied for natural gas reforming reaction and validated using industrial data. Then comparative model analysis and comparison for packed bed rector using conventional pellet shapes and TFBMC is presented. The results indicate that the TFBMC has superior advantages over the conventional pellet shapes especially with regards to the pressure drop and effective usage of the catalyst. Thus, TFBMC offer smaller reactor volume for processing similar feed flow which in turn results in less capital cost and also energy saving in the course of operation. Moreover, the TFBMC concept may be easily adapted to the present fixed bed reactors which use conventional pellet catalysts resulting more productivity and better performance.
- Soltan Mohammadzadeh JS, Zamaniyan A, Iranian J. Sci. Technol., 26, 249 (2002)
- Soltan Mohammadzadeh JS, Zamaniyan A, IChemE., 28, 383 (2002)
- Li Z, Devianto H, Kwon HH, Yoon SP, Lim TH, Lee HI, J. Ind. Eng. Chem., 16(3), 485 (2010)
- Yamada H, Mori H, Tagawa T, J. Ind. Eng. Chem., 16(1), 7 (2010)
- Ebrahimi H, Soltan Mohammadzadeh JS, Zamaniyan A, Shayegh F, Appl. Therm.Eng., 28, 2203 (2008)
- Xu J, Froment GF, AIChE., 35, 97 (1989)
- Elnashaie SSEH, Adris AM, Soliman MA, Al-Ubaid AS, Can. J. Chem. Eng., 70, 786 (1992)
- Zamaniyan A, Ebrahimi H, Soltan Mohammadzadeh JS, Chem. Eng. Prog., 47, 946 (2008)
- Zamaniyan A, Zoghi AT, Ebrahimi H, Comput. Chem. Eng., 32(7), 1433 (2008)
- Bruno SP, Barreto GF, Gonzalez MG, Chem. Eng. J., 39, 147 (1988)
- Roy S, Bauer T, Al-Dahhan M, Lehner P, Turek T, AIChE J., 50(11), 2918 (2004)
- Heck RM, Gulati S, Farrauto RJ, Chem. Eng. J., 82(1-3), 149 (2001)
- Boger T, Heibel AK, Sorensen CM, Ind. Eng. Chem. Res., 43(16), 4602 (2004)
- Kapteijn F, Heiszwolf JJ, Nijhuis TA, Moulijn JA, CATTECH., 1, 24 (1999)
- Kolb G, Hessel V, Chem. Eng. J., 98(1-2), 1 (2004)
- Stankiewicz A, Chem. Eng. Sci., 56(2), 359 (2001)
- Lim JW, Choi Y, Yoon HS, Park YK, Yim JH, Jeon JK, J. Ind. Eng. Chem., 16(1), 51 (2010)
- Lindstrom B, Agrell J, Pettersson LJ, Chem. Eng. J., 93(1), 91 (2003)
- Giroux T, Hwang S, Liu Y, Ruettinger W, Shore L, Appl. Catal. B: Environ., 56(1-2), 95 (2005)
- Ryu JH, Lee KY, La H, Kim HJ, Yang JI, Jung H, J. Power Sources, 171(2), 499 (2007)
- Mei H, Li CY, Ji SF, Liu H, Chem. Eng. Sci., 62(16), 4294 (2007)
- Qi A, Wang S, Ni C, Wu D, Int. J. Hydrogen Energy., 32, 981 (2007)
- Zamaniyan A, Mortazavi Y, Khodadadi AA, Manafi H, Appl. Catal. A: Gen., 385(1-2), 214 (2010)
- Tronconi E, Groppi G, Chem. Eng. Technol., 25(7), 743 (2002)
- Xu J, Froment GF, AIChE., 35, 88 (1989)
- Fogler HS, Elements of Chemical Reaction Engineering, Prentice-Hall International Inc, Toronto (1992)
- Bird RB, Stewart WE, Lightfoot EN, Transport Phenomena, Wiley, New York (1960)
- Froment GF, Bischoff KB, Chemical reactor analysis and design, Wiley, Singapore (1990)
- Boger T, Heibel AK, Chem. Eng. Sci., 60(7), 1823 (2005)
- Groppi G, Tronconi E, Catal. Today, 105(3-4), 297 (2005)
- Holman JP, Heat Transfer, Mc-Graw Hill Inc, New York (1992)
- Boger T, Menegola M, Ind. Eng. Chem. Res., 44(1), 30 (2005)
- Groppi G, Tronconi E, Chem. Eng. Sci., 55(12), 2161 (2000)
- Vortruba J, Mikus O, Nguen K, Hlavacek V, Skrivanek J, Chem. Eng. Sci., 30, 201 (1975)
- Woehl P, Cerro RL, Catal. Today, 69(1-4), 171 (2001)
- Kunii D, Levenspiel O, Fluidization Engineering, Butterworth-Hinemann, New York (1991)