Polymer(Korea), Vol.35, No.6, 531-536, November, 2011
폴리스티렌-폴리(메틸 메타크릴레이트) 이종 블록 공중합체 내의 단일중합체 분포
Homopolymer Distribution in Polystyrene-Poly(methyl methacrylate) Diblock Copolymer
E-mail:
초록
블록 공중합체/단일중합체 블렌드에서 단일중합체의 농도와 분자량 변화에 따른 단일중합체의 분포 경향을 알아보았다. 중수소화 폴리(메틸 메타크릴레이트) 또는 폴리스티렌을 중수소화 폴리스티렌-폴리(메틸 메타크릴레이트) 이 중 블록 공중합체에 20 wt%까지 혼입하였다. 시료들은 소각 X-선 산란, 중성자 반사율 및 투과 전자 현미경으로 조사하였다. 실리콘 웨이퍼에 스핀 코팅하여 얇은 필름 상으로 제조한 블록 공중합체는 기질 표면에 대해 평행하게 배향된 라멜라 모폴로지를 형성하였다. 블록 공중합체의 미세 도메인 구조는 단일중합체의 부가에 의해 상당히 교란되었다. 그 결과로 단일중합체의 농도가 15 wt% 이상인 경우에는 배열 질서도가 낮은 라멜라 모폴로지가 나타났다. 단일공중합체의 농도나 분자량이 증가하면 단일중합체가 미세 도메인을 불균일하게 팽윤시키면서 보다 많은 단일중합체가 미세 도메인의 중앙 부위로 이동하였다.
Homopolymer distribution in block copolymer/homopolymer blends was investigated as a function of homopolymer concentration and homopolymer molecular weight. The deuterated poly(methyl methacrylate) or polystyrene was blended with a deuterated polystyrene-poly(methyl methacrylate) diblock copolymer up to a concentration of 20 wt%. Samples were characterized by small-angle X-ray scattering (SAXS), neutron reflectivity and transmission electron microscopy. The block copolymer with a thin-film geometry formed alternating lamellar microdomains oriented parallel to the substrate surface. By adding the homopolymer, the microdomain structure was significantly disturbed. As a consequence, a poorly ordered morphology appeared when the homopolymer concentration exceeded 15 wt%. Increasing the homopolymer concentration and/or the homopolymer molecular weight caused the microdomains to swell less uniformly, resulting in segregation of the homopolymer toward the middle of the microdomains.
- Jeong U, Ryu DY, Kho DH, Kim JK, Goldbach JT, Kim DH, Russell TP, Adv. Mater., 16(6), 533 (2004)
- Jeong U, Ryu DY, Kho DH, Lee DH, Kim JK, Russell TP, Macromolecules, 36(10), 3626 (2003)
- Liu GL, Thomas CS, Craig GSW, Nealey PF, Adv. Funct. Mater., 20(8), 1251 (2010)
- Hamley IW, The Physics of Block Copolymers, Oxford University Press, New York (1998)
- Kang BY, Choi MJ, Hwang KH, Lee KH, Jin BS, Polym.(Korea), 33(5), 485 (2009)
- Hyun H, Yang JC, Kim MS, Lee HB, Khang G, Polym.(Korea), 30(6), 464 (2006)
- Jeong YI, Jang MK, Nah JW, Polym.(Korea), 33(2), 137 (2009)
- Paik MY, Bosworth JK, Smilges DM, Schwartz EL, Andre X, Ober CK, Macromolecules, 43(9), 4253 (2010)
- Kim JS, Lee KH, Jo SM, Ryu DY, Kim JK, Polym.(Korea), 28(6), 509 (2004)
- Lee JK, Kim JS, Lim HJ, Lee KH, Jo SM, Ougizawa T, Polymer, 47(15), 5420 (2006)
- Hashimoto T, Tanaka H, Hasegawa H, Macromolecules., 23, 4378 (1990)
- Sakurai K, Macknight WJ, Lohse DJ, Schulz DN, Sissano JA, Macromolecules, 27(18), 4941 (1994)
- Zhu L, Mimnaugh BR, Ge Q, Quirk RP, Cheng SZD, Thomas EL, Lotz B, Hsiao BS, Yeh FJ, Liu LZ, Polymer, 42(21), 9121 (2001)
- Radonjic G, Smit I, J. Polym. Sci. B: Polym. Phys., 39(5), 566 (2001)
- Mishra V, Hur SM, Cochran EW, Stein GE, Fredrickson GH, Kramer EJ, Macromolecules, 43(4), 1942 (2010)
- Ptaszynaski B, Teyssie PJ, Skoulios A, Makromol.Chem., 176, 3483 (1975)
- Hashimoto T, Tanaka H, Hasegawa H, Macromolecules., 23, 4378 (1990)
- Winey KI, Thomas EL, Fetters LJ, Macromolecules., 24, 6182 (1991)
- Mayes AM, Russell TP, Satija SK, Majkrzak CF, Macromolecules., 25, 6523 (1992)
- Wang ZG, Phillips RA, Hsiao BS, J. Polym. Sci. B: Polym. Phys., 38(19), 2580 (2000)
- Akpalu Y, Kielhorn L, Hsiao BS, Stein RS, Russell TP, van Egmond J, Muthukumar M, Macromolecules, 32(3), 765 (1999)
- Anastasiadis SH, Russell TP, Satija SK, Majkrzak CF, Phys. Rev. Lett., 62, 1852 (1989)
- Torikai N, Noda I, Karim A, Satija SK, Han CC, Matsushita Y, Kawakatsu T, Macromolecules, 30(10), 2907 (1997)
- Tanaka H, Hasegawa H, Hashimoto T, Macromolecules., 24, 240 (1991)