화학공학소재연구정보센터
Polymer(Korea), Vol.35, No.6, 586-592, November, 2011
전바나듐계 레독스-흐름 전지용 Vinylbenzyl Chloride-co-Styrene-co-Hydroxyethyl Acrylate (VBC-co-St-co-HEA) 음이온교환막의 합성 및 특성
Synthesis and Characterization of Vinylbenzyl Chloride-co-Styrene-co-Hydroxyethyl Acrylate (VBC-co-St-co-HEA) Anion-Exchange Membrane for All-Vanadium Redox Flow Battery
E-mail:
초록
본 연구에서는 전바나듐 레독스-흐름 전지용 음이온교환막의 제조를 위하여 vinylbenzyl chloride-co-styreneco-hydroxyethyl acrylate(VBC-co-St-co-HEA) 공중합체를 합성하였으며, 아민화 및 가교 반응을 통하여 음이온교환막을 제조하였다. 구조확인을 위하여 FTIR, 1H NMR, TGA, GPC 분석을 하였으며, 음이온교환막의 함수율, 이온교환용량, 전기저항, 이온전도도 및 전바나듐 레독스-흐름 전지의 효율을 측정하였다. 음이온교환막의 이온교환용량, 전기저항, 이온전도도는 각각 1.17 meq/g, 1.9 Ωㆍcm2, 0.009 S/cm이었으며, 전바나듐 레독스-흐름 전지 효율 실험 결과 충ㆍ방전효율, 전압효율 및 에너지효율은 각각 99.5, 72.6, 72.1%이었다.
In this study, we synthesized vinylbenzyl chloride-co-styrene-co hydroxyethyl acrylate (VBC-co-St-co-HEA) copolymer that can be applied to redox the flow battery process. The anion exchange membrane was prepared by the amination and crosslinking of VBC-co-St-co-HEA copolymer. The chemical structure and thermal properties of VBC-co-St-co-HEA copolymer and aminated VBC-co-St-co-HEA(AVSH) membrane were characterized by FTIR, 1H NMR, TGA, and GPC analysis. The membrane properties such as ion exchange capacity(IEC), electrical resistance, ion conductivity and efficiency of all-vanadium redox flow battery were measured. The IEC value, electrical resistance, and ion conductivity were 1.17 meq/g, 1.9 Ωㆍcm2, 0.009 S/cm, respectively. The charge-discharge efficiency, voltage efficiency and energy efficiency from all-vanadium redox flow battery test were 99.5, 72.6 and 72.1%, respectively.
  1. Barragan VM, Villaluenga JPG, Godino MP, Izquierdo-Gil MA, Ruiz-Bauza C, Seoane B, J. Colloid Interface Sci., 333(2), 497 (2009)
  2. Lee DH, Kang YS, Kim JH, Macromol. Res., 17(2), 104 (2009)
  3. Pourbaix M, Atlas of electrochemical Equilibra in Aqueous Solutions, National Association of Corrsion Engineers, Houston (1982)
  4. ohya H, Ohto T, Sawamura T, Honda H, Matsumoto K, Negish Y, Denki Kagaku., 56, 34 (1988)
  5. de Korosy F, Shorr J, DeChema Mogr., 47, 477 (1992)
  6. Rydh CJ, J. Power Sources, 80(1-2), 21 (1999)
  7. Shibata A, Sato K, Power Eng. J., 13, 130 (1993)
  8. Fabjan C, Garche J, Harrer B, Jorissen L, Kolbeck C, Philippi F, Tomazic G, Wagner F, Electrochim. Acta, 47(5), 825 (2001)
  9. Mohammadi T, Kazacos MS, J. Appl. Electrochem., 27, 153 (1994)
  10. Hwang GJ, Ohya H, J. Membr. Sci., 120(1), 55 (1996)
  11. Luo QT, Zhang HM, Chen J, Qian P, Zhai YF, J. Membr. Sci., 311(1-2), 98 (2008)
  12. Qiu JY, Li MY, Ni JF, Zhai ML, Peng J, Xu L, Zhou HH, Li JQ, Wei GS, J. Membr. Sci., 297(1-2), 174 (2007)
  13. Mai Z, Zhang H, Li X, Xiao S, Zhang H, J. Power Sources., 10, 1016 (2010)
  14. Choi Y, Lee HS, Hwang TS, Polymer(Korea)., 33, 608 (2007)
  15. Choi KJ, Choi JH, Hwang EH, Rhee YW, Hwang TS, Polym.(Korea), 31(3), 247 (2007)
  16. Kim DJ, Chang BJ, Kim JH, Lee SB, Joo HJ, Memb. J., 16, 221 (2006)
  17. Jeong BY, Song SH, Baek KW, Cho IH, Hwang TS, Polym.(Korea), 30(6), 486 (2006)
  18. Cho IH, Baek KW, Lim YM, Nho YC, Hwang TS, Polym.(Korea), 31(3), 239 (2007)
  19. Luo X, Lu Z, Wu Z, Zhu W, Qui X, J. Phys. Chem., 109, 20310 (2005)
  20. Kazacos MS, Kazacos G, Poon G, Verseema H, Int. Energy Conv. Manag., 51, 2816 (2010)
  21. Ting WH, Dai SA, Shih YF, Yang IK, Su WC, Jeng RJ, Polymer, 49(6), 1497 (2008)
  22. Quinn JF, Chaplin RP, Davis TP, J. Polym. Sci. A: Polym. Chem., 40(17), 2956 (2002)
  23. Paris R, Fuenta J, J. Polym. Sci. Part A: Polym. Chem., 45, 2538 (2007)
  24. Dube MA, Penlidis A, Polymer, 36(3), 587 (1995)
  25. Yang JC, Jablonsky MJ, Mays JW, Polymer, 43(19), 5125 (2002)
  26. Choi YJ, Kang MS, Cho J, Moon SH, J. Membr. Sci., 221(1-2), 219 (2003)
  27. Moon GY, Rhim JW, Macromol. Res., 15(4), 379 (2007)
  28. Lee HS, Roy A, Badami AS, McGrath JE, Macromol. Res., 15(2), 160 (2007)
  29. Li J, Lee CH, Park HB, Lee YM, Macromol. Res., 14(4), 438 (2006)
  30. Lee JS, Yoo M, Chang BJ, Kim JH, Kang H, Lee S, Memb. J., 18, 138 (2008)