Polymer(Korea), Vol.35, No.6, 586-592, November, 2011
전바나듐계 레독스-흐름 전지용 Vinylbenzyl Chloride-co-Styrene-co-Hydroxyethyl Acrylate (VBC-co-St-co-HEA) 음이온교환막의 합성 및 특성
Synthesis and Characterization of Vinylbenzyl Chloride-co-Styrene-co-Hydroxyethyl Acrylate (VBC-co-St-co-HEA) Anion-Exchange Membrane for All-Vanadium Redox Flow Battery
E-mail:
초록
본 연구에서는 전바나듐 레독스-흐름 전지용 음이온교환막의 제조를 위하여 vinylbenzyl chloride-co-styreneco-hydroxyethyl acrylate(VBC-co-St-co-HEA) 공중합체를 합성하였으며, 아민화 및 가교 반응을 통하여 음이온교환막을 제조하였다. 구조확인을 위하여 FTIR, 1H NMR, TGA, GPC 분석을 하였으며, 음이온교환막의 함수율, 이온교환용량, 전기저항, 이온전도도 및 전바나듐 레독스-흐름 전지의 효율을 측정하였다. 음이온교환막의 이온교환용량, 전기저항, 이온전도도는 각각 1.17 meq/g, 1.9 Ωㆍcm2, 0.009 S/cm이었으며, 전바나듐 레독스-흐름 전지 효율 실험 결과 충ㆍ방전효율, 전압효율 및 에너지효율은 각각 99.5, 72.6, 72.1%이었다.
In this study, we synthesized vinylbenzyl chloride-co-styrene-co hydroxyethyl acrylate
(VBC-co-St-co-HEA) copolymer that can be applied to redox the flow battery process. The anion
exchange membrane was prepared by the amination and crosslinking of VBC-co-St-co-HEA copolymer. The chemical structure and thermal properties of VBC-co-St-co-HEA copolymer and aminated VBC-co-St-co-HEA(AVSH) membrane were characterized by FTIR, 1H NMR, TGA, and GPC analysis. The membrane properties such as ion exchange capacity(IEC), electrical resistance, ion conductivity and efficiency of all-vanadium redox flow battery were measured. The IEC value, electrical resistance, and ion conductivity were 1.17 meq/g, 1.9 Ωㆍcm2, 0.009 S/cm, respectively. The charge-discharge efficiency, voltage efficiency and energy efficiency from all-vanadium redox flow battery test were 99.5, 72.6 and 72.1%, respectively.
Keywords:anion exchange membrane;water uptake;ion exchange capacity;electrical resistance;allvanadium redox flow battery.
- Barragan VM, Villaluenga JPG, Godino MP, Izquierdo-Gil MA, Ruiz-Bauza C, Seoane B, J. Colloid Interface Sci., 333(2), 497 (2009)
- Lee DH, Kang YS, Kim JH, Macromol. Res., 17(2), 104 (2009)
- Pourbaix M, Atlas of electrochemical Equilibra in Aqueous Solutions, National Association of Corrsion Engineers, Houston (1982)
- ohya H, Ohto T, Sawamura T, Honda H, Matsumoto K, Negish Y, Denki Kagaku., 56, 34 (1988)
- de Korosy F, Shorr J, DeChema Mogr., 47, 477 (1992)
- Rydh CJ, J. Power Sources, 80(1-2), 21 (1999)
- Shibata A, Sato K, Power Eng. J., 13, 130 (1993)
- Fabjan C, Garche J, Harrer B, Jorissen L, Kolbeck C, Philippi F, Tomazic G, Wagner F, Electrochim. Acta, 47(5), 825 (2001)
- Mohammadi T, Kazacos MS, J. Appl. Electrochem., 27, 153 (1994)
- Hwang GJ, Ohya H, J. Membr. Sci., 120(1), 55 (1996)
- Luo QT, Zhang HM, Chen J, Qian P, Zhai YF, J. Membr. Sci., 311(1-2), 98 (2008)
- Qiu JY, Li MY, Ni JF, Zhai ML, Peng J, Xu L, Zhou HH, Li JQ, Wei GS, J. Membr. Sci., 297(1-2), 174 (2007)
- Mai Z, Zhang H, Li X, Xiao S, Zhang H, J. Power Sources., 10, 1016 (2010)
- Choi Y, Lee HS, Hwang TS, Polymer(Korea)., 33, 608 (2007)
- Choi KJ, Choi JH, Hwang EH, Rhee YW, Hwang TS, Polym.(Korea), 31(3), 247 (2007)
- Kim DJ, Chang BJ, Kim JH, Lee SB, Joo HJ, Memb. J., 16, 221 (2006)
- Jeong BY, Song SH, Baek KW, Cho IH, Hwang TS, Polym.(Korea), 30(6), 486 (2006)
- Cho IH, Baek KW, Lim YM, Nho YC, Hwang TS, Polym.(Korea), 31(3), 239 (2007)
- Luo X, Lu Z, Wu Z, Zhu W, Qui X, J. Phys. Chem., 109, 20310 (2005)
- Kazacos MS, Kazacos G, Poon G, Verseema H, Int. Energy Conv. Manag., 51, 2816 (2010)
- Ting WH, Dai SA, Shih YF, Yang IK, Su WC, Jeng RJ, Polymer, 49(6), 1497 (2008)
- Quinn JF, Chaplin RP, Davis TP, J. Polym. Sci. A: Polym. Chem., 40(17), 2956 (2002)
- Paris R, Fuenta J, J. Polym. Sci. Part A: Polym. Chem., 45, 2538 (2007)
- Dube MA, Penlidis A, Polymer, 36(3), 587 (1995)
- Yang JC, Jablonsky MJ, Mays JW, Polymer, 43(19), 5125 (2002)
- Choi YJ, Kang MS, Cho J, Moon SH, J. Membr. Sci., 221(1-2), 219 (2003)
- Moon GY, Rhim JW, Macromol. Res., 15(4), 379 (2007)
- Lee HS, Roy A, Badami AS, McGrath JE, Macromol. Res., 15(2), 160 (2007)
- Li J, Lee CH, Park HB, Lee YM, Macromol. Res., 14(4), 438 (2006)
- Lee JS, Yoo M, Chang BJ, Kim JH, Kang H, Lee S, Memb. J., 18, 138 (2008)