Korean Journal of Chemical Engineering, Vol.29, No.3, 377-383, March, 2012
Photocatalytic degradation of benzene, toluene, ethylbenzene, and xylene (BTEX) using transition metal-doped titanium dioxide immobilized on fiberglass cloth
E-mail:
Transition metal (Fe, V and W)-doped TiO2 was synthesized via the solvothermal technique and immobilized onto fiberglass cloth (FGC) for uses in photocatalytic decomposition of gaseous volatile organic compounds--benzene, toluene, ethylbenzene and xylene (BTEX)--under visible light. Results were compared to that of the standard commercial pure TiO2 (P25) coated FGC. All doped samples exhibit higher visible light catalytic activity than the pure TiO2. The V-doped sample shows the highest photocatalytic activity followed by the W- and Fe-doped samples. The
UV-Vis diffuse reflectance spectra reveal that the V-doped sample has the highest visible light absorption followed by the W- and Fe-doped samples. The X-ray diffraction (XRD) patterns indicate that all doped samples contain both anatase and rutile phases with the majority (>80%) being anatase. No new peaks associated with dopant oxides can be observed, suggesting that the transition metal (TM) dopants are well mixed into the TiO2 lattice, or are below the detection limit of the XRD. The X-ray absorption near-edge structure spectra of the Ti K-edge transition indicate that most Ti ions are in a tetravalent state with octahedral coordination, but with increased lattice distortion from Fe- to V- and W-doped samples. Our results show that the TM-doped TiO2 were successfully synthesized and immobilized onto flexible fiberglass cloth suitable for treatment of gaseous organic pollutants under visible light.
- Wang S, Ang HM, Tade MO, Environ. Int., 33, 694 (2007)
- Collins C, Laturnus F, Nepovim A, Environ. Sci. Pollut. Res. Int., 9, 86 (2002)
- Thiruvenkatachari R, Vigneswaran S, Moon IS, Korean J. Chem. Eng., 25(1), 64 (2008)
- Lee BY, Park SH, Lee SC, Kang M, Park CH, Choung SJ, Korean J. Chem. Eng., 20(5), 812 (2003)
- Ohno T, Akiyoshi M, Umebayashi T, Asai K, Mitsui T, Matsumura M, Appl. Catal. A: Gen., 265(1), 115 (2004)
- Carp O, Huisman CL, Reller A, Prog. Solid State Chem., 32, 33 (2004)
- Shannon RD, Acta Crystallogr. A., 32, 751 (1976)
- Anpo M, Dohshi S, Kitano M, Hu Y, Takeuchi M, Matsuoke M, Annu. Rev. Mater. Res., 35, 1 (2005)
- Ao CH, Lee SC, Appl. Catal. B: Environ., 44(3), 191 (2003)
- Ku Y, Ma CM, Shen YS, Appl. Catal. B: Environ., 34(3), 181 (2001)
- Dong Y, Bai Z, Liu R, Wang X, Yan H, Zhu T, Environ. Technol., 27, 705 (2006)
- You YS, Chung KH, Kim JH, Seo G, Korean J. Chem. Eng., 18(6), 924 (2001)
- Wantala K, Laokiat L, Khemthong P, Grisdanurak N, Fukaya K, J. Taiwan Inst. Chem. Eng., 41, 612 (2010)
- Khemthong P, Klysubun W, Prayoonpokarach S, Wittayakun J, Mater. Chem. Phys., 121(1-2), 131 (2010)
- Ravel B, Newville M, J. Synchrotron Rad., 12, 537 (2005)
- Farges F, Brown GE, Rehr JJ, Phys. Rev. B., 56, 1809 (1997)
- Ohtani B, Prieto-Mahaney OO, Abe DLR, J. Photochem.Photobiol. A., 216, 179 (2010)
- Wang CY, Bottcher C, Bahnemann DW, Dohrmann JK, J.Mater. Chem., 13, 2322 (2003)
- Choi J, Park H, Hoffmann MR, J. Phys. Chem. C., 114, 783 (2010)
- Fujishima A, Zhang X, C.R. Chimie., 9, 750 (2006)
- Wu ZY, Ouvrard G, Gressier P, Natoli CR, Phys. Rev. B., 55, 10382 (1997)
- Zhou JK, Takeuchi M, Ray AK, Anpo M, Zhao XS, J. Colloid Interface Sci., 311(2), 497 (2007)
- Lee BI, Kaewgun S, Kim W, Choi W, Lee JS, Kim E, J.Renewable Sustainable Energy., 1, 23101 (2009)
- Zhang YL, Wei S, Zhang HY, Liu S, Nawaz F, Xiao FS, J. Colloid Interface Sci., 339(2), 434 (2009)
- Kanchanatip E, Grisdanurak N, Thongruang R, Neramittagapong A, Reac. Kinet. Mech. Cat., 103, 227 (2011)
- Paola AD, Ikeda S, Marci G, Ohtani B, Palmisano L, Int. J.Photoenergy., 3, 171 (2001)
- National Institute of Standards and Technology Chemistry Web-Book (2010). http://webbook.nist.gov/chemistry/. Accessed 12 January 2011.