화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.17, No.1, 122-127, January, 2000
Gas Permeabilities of CO2 and CH4 for polysulfones Substituted with Bromo and Trimethylsilyl Groups
E-mail:
Bromobisphenol A trimethylsilylated polysulfone (BTMSPSf) was synthesized, and the effect of bromo and trimethylsilyl groups on the pure CO2 and CH4 transport properties of polysulfone was examined. The ideal separation factor for BTMSPSf is reduced by about 10% than that for unmodified polysulfone (PSf), but BTMSPSf is about two times more permeable than PSf. The effect of the substituents on chain packing was related to the gas permeation properties. Fractional free volume (FFV) calculation, d-spacing and cohesive energy density were used to judge chain packing. In comparison with PSf, the higher values of permeability coefficients for BTMSPSf are due to higher FFV and d-spacing. The small decrease in ideal separation for BTMSPSf is explained as follows; the potential increase in FFV due to packing-disrupting bulky trimethylsilyl groups is overridden by the increase in cohesive energy density attributed to the addition of bromo substituents.
  1. Aguilar-Vega M, Paul DR, J. Polym. Sci. B: Polym. Phys., 31, 1577 (1993) 
  2. Aitken CL, Koros WJ, Paul DR, Macromol. Mater. Eng., 25, 3424 (1992)
  3. Balta-Calleja FJ, Vonk CG, "The Theory of Coherent X-ray Scattering," in "X-ray Scattering of Synthetic Polymers," Elsevier, Amsterdam, The Netherlands, 1 (1989)
  4. Barbari TA, Datwani SS, J. Membr. Sci., 107(3), 263 (1995) 
  5. Bhide BD, Stern SA, J. Membr. Sci., 81, 209 (1993) 
  6. Bollinger WA, MacLean DL, Narayan RS, Chem. Eng. Prog., Oct, 27 (1982)
  7. Bondi A, J. Phys. Chem., 68, 441 (1964)
  8. Charati G, Houde AY, Kulkarni SS, Kulkarni MG, J. Polym. Sci. B: Polym. Phys., 29, 921 (1991) 
  9. Ghosal K, Chern RT, Freeman BD, Daly WH, Negulescu II, Macromolecules, 29(12), 4360 (1996) 
  10. Ghosal K, Freeman BD, Chern RT, Alvarez JC, delaCampa JG, Lozano AE, deAbajo J, Polymer, 36(4), 793 (1995) 
  11. Hellums MW, Koros WJ, Husk GR, Paul DR, J. Membr. Sci., 46, 93 (1989) 
  12. Hong SI, Kim HJ, Park HY, Kim TJ, Jeong YS, J. Korean Ind. Eng. Chem., 7(5), 877 (1996)
  13. Jacobson SH, Polym. Prepr., 32, 39 (1991)
  14. Kim HJ, Hong SI, Korean J. Chem. Eng., 14(3), 168 (1997)
  15. Kim HJ, Kong SI, Korean J. Chem. Eng., 14(5), 382 (1997)
  16. Kim HJ, Hong SI, Korean J. Chem. Eng., 16(3), 343 (1999)
  17. Kesting RE, Fretsche AK, "Theory of Gas Transport in Membranes," in "Polymeric Gas Separation Membranes," John Wiley & Sons, New York, NY, 19 (1993)
  18. Koros WJ, Fleming GK, J. Membr. Sci., 83, 1 (1993) 
  19. Koros WJ, Paul DR, J. Polym. Sci. B: Polym. Phys., 14, 1903 (1976)
  20. Maier G, Wolf M, Bleha M, Pientka Z, J. Membr. Sci., 143(1-2), 105 (1998) 
  21. Maier G, Wolf M, Bleha M, Pientka Z, J. Membr. Sci., 143(1-2), 115 (1998) 
  22. McHattie JS, Koros WJ, Paul DR, J. Polym. Sci. B: Polym. Phys., 29, 731 (1991) 
  23. McHattie JS, Koros WJ, Paul DR, Polymer, 32, 840 (1991) 
  24. McHattie JS, Koros WJ, Paul DR, Polymer, 32, 2618 (1991) 
  25. McHattie JS, Koros W, Paul DR, Polymer, 33, 1701 (1992) 
  26. Muruganandam N, Koros WJ, Paul DR, J. Polym. Sci. B: Polym. Phys., 25, 1999 (1987) 
  27. O'Brien KC, Koros WJ, Husk GR, J. Membr. Sci., 35, 217 (1988) 
  28. Paul DR, Koros WJ, J. Polym. Sci. B: Polym. Phys., 14, 675 (1976)
  29. Pixton MR, Paul DR, Polymer, 36(16), 3165 (1995) 
  30. Puleo AC, Muruganadam N, Paul DR, J. Polym. Sci. B: Polym. Phys., 27, 2385 (1989) 
  31. Rautenbach R, Welsch K, J. Membr. Sci., 87(1-2), 107 (1994) 
  32. Stern SA, J. Membr. Sci., 94, 1 (1994)
  33. VanKrevelen DW, "Volumetric Properties," in "Properties of Polymers," Elsevier, Amsterdam, The Netherlands, 71 (1990)