화학공학소재연구정보센터
Chinese Journal of Chemical Engineering, Vol.18, No.6, 979-987, 2010
In situ Synthesis of SAPO-34 Zeolites in Kaolin Microspheres for a Fluidized Methanol or Dimethyl Ether to Olefins Process
SAPO-34 zeolite is considered to be an effective catalyst for methanol or dimethyl ether conversion to olefins. In this study, we developed the in situ synthesis technology to prepare SAPO-34 zeolite in kaolin microspheres as a catalyst for fluidized methanol or dimethyl ether to olefins process. The silicoaluminophosphate zeolite was first time reported to be synthesized in kaolin microspheres. The SAPO-34 content of synthesized catalyst was about 22% as measured by three different quantitative methods (micropore area, X-ray fluorescence and energy dispersive spectroscopy element analysis). Most of the SAPO-34 zeolites were in nanoscale size and distributed uniformly inside the spheres. The catalytic performance was evaluated in fixed bed and fluidized bed reactors. Compared with the conventional spray-dry catalyst, SAPO/kaolin catalyst showed superior catalytic activities, better olefin selectivities (up to 94%, exclusive coke), and very good hydrothermal stability. The in situ synthesis of SAPO-34 in kaolin microspheres is a facile and economically feasible way to prepare more effective catalyst for fluidized MTO/DTO (methanol to olefins/dimethyl ether to olefins) process.