화학공학소재연구정보센터
Macromolecular Research, Vol.20, No.1, 30-36, January, 2012
Iodine Doped Polyaniline Thin Film for Heterostructure Devices via PECVD Technique: Morphological, Structural, and Electrical Properties
E-mail:,
The deposition of undoped and iodine (I2)-doped polyaniline (PANI) on TiO2 thin film was carried out using plasma-enhanced chemical vapor deposition (PECVD) under different power inputs for the fabrication of p-polyaniline/n-TiO2 heterostructure devices. The increment in the size of TiO2 nanoparticles was observed after I2 doping by PECVD. The crystalline properties were altered upon I2 doping, suggesting a subtractive interaction between PANI and I2 moieties during PECVD. The significant changes in the structural and optical properties confirmed the I2 doping of PANI with strong bonding to the TiO2 nanomaterials. The existence of hydrogen bonding between the imine (-NH) of PANI and the hydroxyl (-OH) group of TiO2 nanomaterials was investigated by X-ray photoelectron spectroscopy characterization. A device fabricated by PANI/TiO2 or I2-PANI/TiO2 thin film with a top platinum (Pt) layer exhibited nonlinear behavior of current (I)-voltage (V) curve, i.e., moderate diode behavior. Compared to the Pt/PANI/TiO2 heterostructure device, the Pt/I2-PANI/TiO2 heterostructure device showed improved I-V properties with a considerably higher current of 0.050 mA, which might be attributed to the I2 doping-induced generation of large numbers of polarons in the PANI bandgap.
  1. Nalwa HS, in Handbook of Organic Conductive Molecules and Polymers, John Wiley and Sons, New York, 2, 161 (1997)
  2. Ameen S, Akhtar MS, Husain M, Sci. Adv. Mater., 2, 441 (2010)
  3. MacDiarmid AG, Epstein AJ, Salaneck WR, Clark DT, Samuelson EJ, in Science and Application of Conducting Polymers, IOP published, Bristol, 117 (1991)
  4. Ameen S, Ali V, Zulfequar M, Haq MM, Husain M, Curr. Appl. Phys., 9(2), 478 (2009)
  5. Huang WS, Humphrey B, MacDiarmid AG, J. Chem.Soc. Faraday Trans., 82, 2385 (1986)
  6. Blinova NV, Stejskal J, Trchova M, Prokes J, Omastova M, Eur. Polym. J., 43, 2331 (2007)
  7. Hasik M, Kurkowska I, Bernasik A, React. Funct. Polym., 66, 1703 (2006)
  8. Dimitriev OP, Synth. Met., 142, 299 (2004)
  9. Hirao T, Coord. Chem. Rev., 226, 81 (2002)
  10. Hirao T, Higuchi M, Hatano B, Ikeda I, Tetrahedron Lett., 36, 5925 (1995)
  11. Zeng XR, Ko TM, J. Polym. Sci. B: Polym. Phys., 35(13), 1993 (1997)
  12. Stejskal J, Trchova M, Blinova NV, Konyushenko EN, Reynaud S, Prokes J, Polymer, 49(1), 180 (2008)
  13. Zaharias GA, Bent SF, Chem. Vapor Depos., 15, 133 (2009)
  14. Inagaki N, Matsunaga M, Polym. Bull., 13, 349 (1985)
  15. Ameen S, Akhtar MS, Kim YS, Yang OB, Shin HS, Microchim. Acta., 172, 471 (2011)
  16. Ameen S, Akhtar MS, Kim GS, Kim YS, Yang OB, Shin HS, J. Alloys Compd., 487, 382 (2009)
  17. Ameen S, Akhtar MS, Kim YS, Yang OB, Shin HS, J. Nanosci. Nanotechnol., 11, 1559 (2011)
  18. Ameen S, Akhtar MS, Kim YS, Yang OB, Shin HS, J. Nanosci. Nanotechnol., 11, 3306 (2011)
  19. Ameen S, Ansari SG, Song M, Kim YS, Shin HS, Superlattices Microstruct., 46, 745 (2009)
  20. Cruz GJ, Morales J, Ortega MMC, Olayo R, Synth.Met., 88, 213 (1997)
  21. Sengupta PP, Barik S, Adhikari B, Mater. Manuf. Process., 21, 263 (2006)
  22. Ameen S, Akthar MS, Ansari SG, Yang OB, Shin HS, Superlattices Microstruct., 46, 872 (2009)
  23. Vladu MI, Fergus JW, Synth. Met., 156, 1401 (2006)
  24. Khan AA, Khalid M, Niwas R, Sci. Adv. Mater., 2, 474 (2010)
  25. Sobczak JW, Kosinski A, Bilinski A, Pielaszek J, Palczewska W, Adv. Mater. Opt. Electron., 8, 295 (1998)
  26. Teshima K, Yamada K, Kobayashi N, Hirohashi R, J. Electroanal. Chem., 426(1-2), 97 (1997)
  27. Adhikari S, Banerji P, Thin Solid Films, 518(19), 5421 (2010)
  28. Ameen S, Ali V, Zulfequar M, Haq MM, Husain M, Physica E., 40, 2805 (2008)
  29. Zuo F, McCall RP, Ginder JM, Roe MG, Leng JM, Epstein AJ, Asturias GE, Ermer SP, Ray A, Mac-Diarmid AG, Synth. Met., 29, 445 (1989)
  30. Zheng WY, Levon K, Laakso J, Osterholm JE, Macromolecules, 27(26), 7754 (1994)
  31. Zhao L, Yu JG, J. Colloid Interface Sci., 304(1), 84 (2006)
  32. Mathew R, Mattes BR, Espe MP, Synth. Met., 131, 141 (2002)
  33. Monkman AP, Stevens GC, Bloor D, J. Phys. D:Appl. Phys., 24, 738 (1991)
  34. Wu MS, Wen TC, Gopalan A, J. Electrochem. Soc., 148(5), D65 (2001)
  35. Chen WC, Wen TC, Gopalan A, Electrochim. Acta, 47(26), 4195 (2002)
  36. Lin L, Zheng RY, Xie JL, Zhu YX, Xie YC, Appl. Catal. B: Environ., 76(1-2), 196 (2007)
  37. Kang H, Lee C, Yoon SC, Cho CH, Cho J, Kim BJ, Langmuir, 26(22), 17589 (2010)
  38. Wei XL, Fahlman M, Epstein KJ, Macromolecules, 32(9), 3114 (1999)
  39. Rajagopalan R, Iroh JO, Appl. Surf. Sci., 218(1-4), 58 (2003)
  40. Kang ET, Ti HC, Neoh KG, Tan TC, Polym. J., 20, 399 (1988)
  41. Gizdavic-Nikolaidis M, Bowmaker GA, Polymer, 49(13-14), 3070 (2008)
  42. Biederman H, Vacuum., 37, 363 (1987)