화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.18, No.1, 152-159, January, 2012
LSER modeling of extraction of succinic acid by tridodecylamine dissolved in 2-octanone and 1-octanol
E-mail:
Reactive extraction can be used for the recovery of carboxylic acids from fermentation broth. Through the formation of complex with extractants at the two-phase interface, the carboxylic acids are partitioned into organic solvents. But, the recovery of carboxylic acids is interrupted by the conditions of fermentation broth. In this work, kinetic studies for the extraction of succinic acid from aqueous solution with tridodecylamine diluted in 2-octanone and 1-octanol have been carried out. Equilibrium and kinetic studies for the extraction of succinic acid from aqueous solution with tridodecylamine diluted in two functional groups (alcohol and ketone) such as 2-octanone and 1-octanol are reported. All measurements have been carried out at 298.15 K. The results of the liquid.liquid equilibrium measurements have been correlated by a linear solvation energy relationship . LSER model which takes into account physical interactions.
  1. Asci YS, Inci I, J. Chem. Eng. Data., 55, 847 (2010)
  2. Hong YK, Hong WH, Sep. Purif. Technol., 42(2), 151 (2005)
  3. Hong YK, Hong WH, Biotechnol. Technol., 13, 915 (1999)
  4. Uslu H, Ind. Eng. Chem. Res., 45, 5788 (2007)
  5. Uslu H, Fluid Phase Equilib., 253(1), 12 (2007)
  6. Young SJ, Eun ZL, Yun SH, Yeon KH, Won HH, Sang YL, Biochem. Eng. J., 36, 8 (2007)
  7. Yang ST, White SA, Hsu ST, Ind. Eng. Chem. Res., 30, 1335 (1991)
  8. Kyuchoukov G, Marinova M, Molinier J, Albet J, Malmary G, Ind. Eng. Chem. Res., 40(23), 5635 (2001)
  9. I˙nci I, Investigation of extraction of some hydroxy carboxylic acids from aqueous solutions, PhD Thesis, I˙ stanbul University (2000)
  10. Wennersten R, J. Chem. Technol. Biotechnol., 33, 85 (1983)
  11. Han DH, Hong WH, Sep. Sci. Technol., 31(8), 1123 (1996)
  12. San-Martin M, Pazos C, Coca J, J. Chem. Technol. Biotechnol., 54, 1 (1992)
  13. Lee SC, J. Ind. Eng. Chem., 15(3), 403 (2009)
  14. Jung MJ, Venkateswaran P, Lee YS, J. Ind. Eng. Chem., 14(1), 110 (2008)
  15. Kirsch T, Maurer G, Ind. Eng. Chem. Res., 35(5), 1722 (1996)
  16. Chaikorski AA, Niklskii BP, Mikhailov BA, Sov. Radiochem., 152 (1966)
  17. I˙nci I, Uslu H, J. Chem. Eng. Data., 50, 536 (2005)
  18. Sanmartin M, Pazos C, Coca J, J. Chem. Technol. Biotechnol., 65(3), 281 (1996)
  19. Tamada JA, Kertes AS, King CJ, Ind. Eng. Chem. Res., 29, 1327 (1990)
  20. Tamada JA, Kertes AS, King CJ, Ind. Eng. Chem. Res., 29, 1319 (1990)
  21. Doraiswamy LK, Sharma MM, first ed., Heterogeneous reaction: analysis, examples, and reactor design, Fluid.Fluid.Solid-Reactions, 17, Wiley, New York, 2 (1984)
  22. Keshav A, Wasewar KL, Chand S, Desalination, 244(1-3), 12 (2009)
  23. Keshav A, Wasewar KL, Chand S, Chem. Eng. Commun., 197(4), 606 (2009)
  24. Kamlet MJ, Abboud M, Abraham MH, Taft RW, J. Org. Chem., 48, 2877 (1983)
  25. Hilal SH, Karickhoff SW, Carreira LA, QSAR Comb. Sci., 23, 709 (2004)
  26. Wasewar KL, Heesink ABM, Versteeg GF, Pangarkar VG, J. Biotechnol., 97, 59 (2002)
  27. Wasewar KL, Yawalkar AA, Moulijn JA, Pangarkar VG, Ind. Eng. Chem. Res., 43(19), 5969 (2004)