Korean Journal of Chemical Engineering, Vol.29, No.4, 525-528, April, 2012
Low-temperature growth of highly conductive and transparent aluminum-doped ZnO film by ultrasonic-mist deposition
E-mail:
Aluminum-doped ZnO (AZO) thin films are grown by ultrasonic-mist deposition method for the transparent conducting oxides (TCO) applications at low temperatures. The AZO films can be grown at a temperature as low as 200 ℃ with zinc acetylacetonate and aluminum acetylacetonate sources. The lowest resistivity of grown AZO films is 1.0×10^(-3) Ω·cm and the lowest sheet resistance of 1 μm thick films is 10 Ω/□, which is close to that of commercial indium tin oxide (ITO) or Asahi U-type SnO2 : F glass. The highest carrier concentration and mobility are 5.6×1020cm^(-3) and 15 cm2/V·sec, respectively. Optical transmittance of the AZO films is found over 75% for all growth conditions. We believe that the properties of grown AZO films in this study are the best among all reported previously elsewhere by solution processes.
Keywords:Zinc Oxide;Aluminum-doped Zinc Oxide (AZO);Transparent Conducting Oxides;Ultrasonic-mist Deposition
- Kelly PJ, Zhou Y, J. Vac. Sci. Technol. A, 24(5), 1782 (2006)
- Park SM, Ikegami T, Ebihara K, Jpn. J. Appl. Phys., 44(11), 8027 (2005)
- Sato H, Minami T, Miyata T, Takata S, Ishii M, Thin Solid Films, 246(1-2), 65 (1994)
- Mrida S, Basak D, J. Phys. D: Appl. Phys., 40, 6902 (2007)
- Tsang WM, Wong FL, Fung MK, Chang JC, Lee CS, Lee ST, Thin Solid Films., 517, 891 (2008)
- Nayak PK, Yang J, Kim J, Chung S, Jeong J, Lee C, Hong Y, J. Phys. D: Appl. Phys., 42, 035102 (2009)
- Yousfi EB, Weinberger B, Donsanti F, Cowache P, Lincot D, Thin Solid Films, 387(1-2), 29 (2001)
- Ashour A, Kaid MA, El-Sayed NZ, Ibrahim AA, Appl. Surf. Sci., 252(22), 7844 (2006)
- Rozati SM, Akesteh S, Mater. Charact., 58, 319 (2007)
- Wienke J, Booij AS, Thin Solid Films., 516, 4508 (2008)
- Olvera ML, Gomez H, Maldonado A, Sol. Energy Mater. Sol. Cells., 91, 1449 (2007)
- Kaid MA, Ashour A, Appl. Surf. Sci., 253(6), 3029 (2007)
- Lucio-Lopez MA, Luna-Arias MA, Maldonado A, Olvera ML, Acosta DR, Sol. Energy Mater. Sol. Cells., 90, 733 (2006)
- Caglar M, Ilican S, Caglar Y, Yakuphanoglu F, J. Mater. Sci.: Mater. Electron., 19, 704 (2008)
- Lee JH, Park BO, Mater. Sci. Eng. B., 106, 242 (2004)
- MaTY, Lee SC, J. Mater. Sci.: Mater. Electron., 11, 305 (2000)
- Lu JG, Kawaharamura T, Nishinaka H, Kamada Y, Ohshima T, Fujita S, J. Cryst. Growth, 299(1), 1 (2007)
- Nishinaka H, Kawaharamura T, Fujita S, Jpn. J. Appl. Phys., 46(10A), 6811 (2007)
- Maruyama T, Shionaoya J, J. Mater. Sci. Lett., 11, 170 (1992)
- Kim H, Gilmore CM, Pique A, Horwitz JS, Mattoussi H, Murata H, Kafai ZH, Chrisey DB, J. Appl. Phys., 86, 6451 (1999)
- Jayaraj MK, Antony A, Ramachandram M, Bull. Mater. Sci., 25(3), 227 (2002)
- Roth AP, Webb JB, Williams DF, Phys. Rev., B25, 7836 (1982)
- Sernelius BE, Berggren KF, Jin ZC, Hamberg I, Granqvist C, Phys. Rev., B37, 10244 (1988)
- Sato K, Gotoh Y, Wakayama Y, Hayashi Y, Adachi K, Nishimura H, Reports of the Research Labs ; Asahi Glass Co. Ltd., 42, 129 (1992)