화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.29, No.4, 525-528, April, 2012
Low-temperature growth of highly conductive and transparent aluminum-doped ZnO film by ultrasonic-mist deposition
E-mail:
Aluminum-doped ZnO (AZO) thin films are grown by ultrasonic-mist deposition method for the transparent conducting oxides (TCO) applications at low temperatures. The AZO films can be grown at a temperature as low as 200 ℃ with zinc acetylacetonate and aluminum acetylacetonate sources. The lowest resistivity of grown AZO films is 1.0×10^(-3) Ω·cm and the lowest sheet resistance of 1 μm thick films is 10 Ω/□, which is close to that of commercial indium tin oxide (ITO) or Asahi U-type SnO2 : F glass. The highest carrier concentration and mobility are 5.6×1020cm^(-3) and 15 cm2/V·sec, respectively. Optical transmittance of the AZO films is found over 75% for all growth conditions. We believe that the properties of grown AZO films in this study are the best among all reported previously elsewhere by solution processes.
  1. Kelly PJ, Zhou Y, J. Vac. Sci. Technol. A, 24(5), 1782 (2006)
  2. Park SM, Ikegami T, Ebihara K, Jpn. J. Appl. Phys., 44(11), 8027 (2005)
  3. Sato H, Minami T, Miyata T, Takata S, Ishii M, Thin Solid Films, 246(1-2), 65 (1994)
  4. Mrida S, Basak D, J. Phys. D: Appl. Phys., 40, 6902 (2007)
  5. Tsang WM, Wong FL, Fung MK, Chang JC, Lee CS, Lee ST, Thin Solid Films., 517, 891 (2008)
  6. Nayak PK, Yang J, Kim J, Chung S, Jeong J, Lee C, Hong Y, J. Phys. D: Appl. Phys., 42, 035102 (2009)
  7. Yousfi EB, Weinberger B, Donsanti F, Cowache P, Lincot D, Thin Solid Films, 387(1-2), 29 (2001)
  8. Ashour A, Kaid MA, El-Sayed NZ, Ibrahim AA, Appl. Surf. Sci., 252(22), 7844 (2006)
  9. Rozati SM, Akesteh S, Mater. Charact., 58, 319 (2007)
  10. Wienke J, Booij AS, Thin Solid Films., 516, 4508 (2008)
  11. Olvera ML, Gomez H, Maldonado A, Sol. Energy Mater. Sol. Cells., 91, 1449 (2007)
  12. Kaid MA, Ashour A, Appl. Surf. Sci., 253(6), 3029 (2007)
  13. Lucio-Lopez MA, Luna-Arias MA, Maldonado A, Olvera ML, Acosta DR, Sol. Energy Mater. Sol. Cells., 90, 733 (2006)
  14. Caglar M, Ilican S, Caglar Y, Yakuphanoglu F, J. Mater. Sci.: Mater. Electron., 19, 704 (2008)
  15. Lee JH, Park BO, Mater. Sci. Eng. B., 106, 242 (2004)
  16. MaTY, Lee SC, J. Mater. Sci.: Mater. Electron., 11, 305 (2000)
  17. Lu JG, Kawaharamura T, Nishinaka H, Kamada Y, Ohshima T, Fujita S, J. Cryst. Growth, 299(1), 1 (2007)
  18. Nishinaka H, Kawaharamura T, Fujita S, Jpn. J. Appl. Phys., 46(10A), 6811 (2007)
  19. Maruyama T, Shionaoya J, J. Mater. Sci. Lett., 11, 170 (1992)
  20. Kim H, Gilmore CM, Pique A, Horwitz JS, Mattoussi H, Murata H, Kafai ZH, Chrisey DB, J. Appl. Phys., 86, 6451 (1999)
  21. Jayaraj MK, Antony A, Ramachandram M, Bull. Mater. Sci., 25(3), 227 (2002)
  22. Roth AP, Webb JB, Williams DF, Phys. Rev., B25, 7836 (1982)
  23. Sernelius BE, Berggren KF, Jin ZC, Hamberg I, Granqvist C, Phys. Rev., B37, 10244 (1988)
  24. Sato K, Gotoh Y, Wakayama Y, Hayashi Y, Adachi K, Nishimura H, Reports of the Research Labs ; Asahi Glass Co. Ltd., 42, 129 (1992)