Polymer(Korea), Vol.36, No.1, 65-70, January, 2012
플라즈마 처리된 폴리프로필렌 표면 위에 글리시딜메타크릴레이트의 에멀젼 그래프팅
Emulsion Grafting of Glycidyl Methacrylate onto Plasma-treated Polypropylene Surface
E-mail:
초록
글리시딜메타크릴레이트(GMA)의 플라즈마 유도 그래프트 공중합을 통해 기재로 사용한 평판형 폴리프
로필렌 위에 에폭시 그룹을 도입하였다. 그래프트 공중합은 에멀젼 공중합법을 적용하였고, 기존의 용액 공중합과 비교하여 그 효과를 확인하고자 하였다. 대기압 플라즈마 처리 조건은 RF power 200 W, 처리시간 30초, Ar 기체 유속 6 LPM으로 고정하였고, 처리 후의 대기 중 노출시간 역시 5분으로 고정하였다. 중합반응에서는 GMA의 농도, 반응온도, 반응시간에 따라 표면 그래프트도의 변화를 최적화하였다. 그 결과, GMA 농도 12%, 반응온도 90 ℃, 반응시간 5시간으로 중합하였을 때 가장 높은 그래프트도를 나타내었다. 분석 결과, 같은 반응조건 하에서 에멀젼 중합이 용액 중합에 비하여 더 많은 에폭시 그롭 도입에 효과적임을 확인하였다.
Glycidyl methacrylate (GMA) was used to introduce epoxy groups on the surface of polypropylene (PP) plate, used as a substrate, through plasma-induced graft copolymerization. Emulsion polymerization was applied for graft copolymerization of GMA and was compared with conventional solution polymerization to confirm its effect. Plasma treatment conditions under one atmospheric pressure were fixed as follows; the RF power of 200 W, the treatment time of 30 sec, the Ar gas flow rate of 6 LPM, and the exposure time of treated PP samples in air of 5 min. For graft-copolymerization, GMA concentration, reaction temperature, and reaction time was optimized to maximize the grafting degree of GMA. The maximum grafting degree of GMA was obtained at the condition of 12%-GMA concentration, 90 ℃ reaction temperature, and 5 hr-reaction time. Analysis results supported that the emulsion polymerization was more effective than the solution polymerization for grafting more GMAs on the surface of PP plate under the same reaction conditions.
Keywords:plasma-induced graft copolymerization;emulsion grafting;glycidyl methacrylate;polypropylene.
- Zeniewicz M, J. Adhes. Sci. Technol., 15, 1769 (2001)
- Xu G, Lin S, Macromol. Sci. Rev. Macromol. Chem. Phys., 34, 555 (1994)
- Chen CM, Reac. Func. Polym., 68, 1307 (2008)
- Tyagi C, Tomar LK, Singh H, J. Appl. Polym. Sci., 111(3), 1381 (2009)
- Seko N, Ninh NTY, Tamada M, Radiat. Phys. Chem., 79, 22 (2010)
- Hirotsu T, Thin Solid Films, 506, 173 (2006)
- Kitching KJ, Vicky P, Ratner BD, Plasma Polymer Films, Imperial College Press, Singapore (2004)
- Favia P, Tomaso LD, Sardella E, Palumbo F, Colaprico V, R.d’Agostino, Proceedings of Vol. VI, ISPC-15, VI (2367)
- Gomathi N, Neogi S, Appl. Surf. Sci., 255(17), 7590 (2009)
- Jung JS, Myung SW, Choi HS, Korean J. Chem. Eng., 25(5), 1190 (2008)
- Titov VA, Shikova TG, Rybkin VV, Smirnov DS, Ageeva TA, Choi HS, High Temp. Mat. Pr., 10, 467 (2006)
- Choi HS, Rybkin VV, Titov VA, Shikova TG, Ageeva TA, Surf. Coat. Tech., 200, 4479 (2006)
- Kwon OJ, Tang S, Myung SW, Lu N, Choi HS, Surf. Coat. Tech., 192, 1 (2005)
- Le Thuaut P, Martel B, Crini G, Maschke U, Coqueret X, Morcellet M, J. Appl. Polym. Sci., 77(10), 2118 (2000)
- Hirotsu T, Thin Solid Films, 506, 173 (2006)
- Seko N, Bang LT, Tamada M, Materials and Atoms., 265, 146 (2007)
- Kudrysvtsev VN , Kabanov VY, Yanul NA, Kedik SA, High. Energ. Chem., 37, 382 (2003)
- Zeniewicz M, J. Adhes. Sci. Technol., 15, 1769 (2001)
- Bhat NV, Upadhyay DJ, Deshmukh RR, Gupta SK, J. Phys. Chem. B., 107, 4550 (2003)
- Nakanishi K, Infrared Absorption Spectroscopy, Holden-Day, San Francisco (1962)