Korean Chemical Engineering Research, Vol.50, No.1, 50-54, February, 2012
수퍼커패시터 전극을 위한 폴리아닐린/TiO2 복합체의 제조 및 전기화학적 성질
Preparation and Electrochemical Properties of PANI/TiO2 Composites for Supercapacitor Electrodes
E-mail:
초록
본 연구는 커패시터 전극 응용을 위한 복합체 전극에 관련된 것으로 PANI와 PANI/TiO2로 구성된 수퍼커패시터 전극을 제조하여 cyclic voltammetry(CV)를 이용하여 6 M KOH 수용액에서 축전량(capacitance) 특성을 조사하였다. PANI/TiO2 복합체는 간단한 in-situ 방법을 통해 다양한 비율로 합성되었다. PANI/TiO2 복합체의 형태학(morphology)적 특징을 파악하기 위해서 주사전자현미경(SEM)과 투과전자현미경(TEM)을 통해 분석하였고, X선 회절 분석기(XRD)를 이용하여 복합체의 결정화도와 담지된 TiO2의 입자크기를 확인하였다. 전기화학적 시험 결과, 아닐린 대비 TiO2의 주입량이 10 wt%일 때 가장 우수한 축전량(626 Fg^(-1))을 나타냈고 높은 주사속도인 100 mVs^(-1)에서 286 Fg^(-1)의 비축전량을 나타내었다. 이는 폴리아닐린(PANI) 매트릭스(matrix)에 균일하게 담지된 TiO2(~6.5 nm)가 효과적인 연결 구조를 형성하여 전하이동현상이 증가하고, 축전이 가능한 반응면적이 증가한 것과 관련있다고 판단된다.
In this study, PANI and PANI/TiO2 composites were prepared as electrode materials for a supercapacitor application. Cyclic voltammetry (CV) was performed to investigate the supercapacity properties of these electrodes in an electrolyte solution of 6 M KOH. The PANI/TiO2 composites were polymerized by amount of various ratios through a simple in-situ method. The morphological properties of composites were analyzed by SEM and TEM method. The crystallinity of the composite and TiO2 particle size were identified using X-ray diffraction (XRD). In the electrochemical test, The electrode containing 10 wt% TiO2 content against aniline units showed the highest specific capacitance (626Fg^(-1)) and delivered a capacitance of 286 Fg^(-1) reversibly at a 100 mVs^(-1) rate. According to the surface morphology, the increased capacitance was related to the fact that nano-sized TiO2 particles (~6.5 nm) were uniformly connected for easy charge transfer and an enhanced surface area for capacitance reaction of TiO2 itself.
- Morimoto T, Hiratsuka K, Sanada Y, Kurihara K, J. Power Sources., 60(2), 239 (1996)
- Arico AS, Bruce P, Scrosati B, Tarascon JM, Schalkwijk WV, Nat. Mater., 4, 366 (2005)
- Frackowiak E, Phys. Chem. Chem. Phys., 9, 1774 (2007)
- Wang S, Jiang SP, Wang X, Electrochimica Acta., 56, 3338 (2011)
- Zhu, Murali S, Stoller MD, Velamakanni A, Piner RD, Ruoff RS, Carbon., 48, 2118 (2010)
- Snook GA, Kao P, Best AS, J. Power Sources, 196(1), 1 (2011)
- Amarnath CA, Chang JH, Kim D, Mane RS, Han SH, Sohn D, Mater. Chem. Phys., 113(1), 14 (2009)
- Guan H, Fan LZ, Zhang HC, Qu XH, Electrochim. Acta, 56(2), 964 (2010)
- Liu JL, Zhou MQ, Fan LZ, Li P, Qu XH, Electrochim. Acta, 55(20), 5819 (2010)
- Li GC, Zhang CQ, Li YM, Peng HR, Chen KZ, Polymer, 51(9), 1934 (2010)
- Lokhande CD, Dubal DP, Oh, Shim J, Curr. Appl. Phys., 11, 255 (2011)
- Chepuri RK, Rao M, Vijayan M, Synthetic Metals., 158, 516 (2008)
- Yuan C, Su L, Gao B, Zhang X, Electrochimica Acta., 54, 7039 (2008)
- Panic VV, Dekanski AB, Stevanovic RM, J. Power Sources, 195(13), 3969 (2010)
- Hu ZA, Xie YL, Wang YX, Mo LP, Yang YY, Zhang ZY, Mater. Chem. Phys., 114(2-3), 990 (2009)
- Zhang Y, Feng H, Wu X, Wang L, Zhang A, Xia T, Dong H, Li X, Zhang L, Int. J. Hydrog. Energy., 34, 4889 (2009)
- Wang DH, Kou R, Choi DW, Yang Z, Nie Z, Li J, Saraf LV, Hu D, Zhang J, Graff GL, Liu J, Pope, Askay M, ACS Nano., 23, 1587 (2010)
- Wang DW, Li F, Zhao J, Ren W, Chen ZG, Tan J, Wu ZS, Gentle L, Lu GQ, Cheng HM, ACS Nano., 3, 1745 (2009)
- Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin LC, Carbon., 49, 2917 (2011)
- Kim KS, Park SJ, Electrochimica Acta., 56, 6547 (2011)
- Ko JM, Ryu KS, Kim S, Kim KM, J. Appl. Electrochem., 39(8), 1331 (2009)
- Lai C, Zhang HZ, Li GR, Gao XP, J. Power Sources, 196(10), 4735 (2011)
- Da D, Kim MG, Lee JY, Cho JP, Energy Environ. Sci., 2, 818 (2009)
- Chen X, Mao SS, Chem. Rev., 107(7), 2891 (2007)
- Zhao Y, Zhan L, Tian J, Nie S, Ning Z, Electrochimica Acta., 56, 1967 (2011)
- Stoller MD, Park SJ, Zhu Y, Ahn JH, Ruoff RS, Nano Lett., 8, 3498 (2008)
- Yan J, Wei T, Qiao WM, Shao B, Zhao QK, Zhang LJ, Fan ZJ, Electrochim. Acta, 55(23), 6973 (2010)