- Previous Article
- Next Article
- Table of Contents
Combustion and Flame, Vol.158, No.11, 2077-2089, 2011
Multiple benzene-formation paths in a fuel-rich cyclohexane flame
Detailed data and modeling of cyclohexane flames establish that a mixture of pathways contributes to benzene formation and that this mixture changes with stoichiometry. Mole-fraction profiles are mapped for more than 40 species in a fuel-rich, premixed flat flame (phi = 2.0, cyclohexane/O-2/30% Ar, 30 Torr, 50.0 cm/s) using molecular-beam mass spectrometry with VUV-photoionization at the Advanced Light Source of the Lawrence Berkeley National Laboratory. The use of a newly constructed set of reactions leads to an excellent simulation of this flame and an earlier stoichiometric flame (M.E. Law et al., Proc. Combust. Inst. 31 (2007) 565-573), permitting analysis of the contributing mechanistic pathways. Under stoichiometric conditions, benzene formation is found to be dominated by stepwise dehydrogenation of the six-membered ring with cyclohexadienyl reversible arrow benzene + H being the final step. This finding is in accordance with recent literature. Dehydrogenation of the six-membered ring is also found to be a dominant benzene-formation route under fuel-rich conditions, at which H-2 elimination from 1,3-cyclohexadiene contributes even more than cyclohexadienyl decomposition. Furthermore, at the fuel-rich condition, additional reactions make contributions, including the direct route via 2C(3)H(3) reversible arrow benzene and more importantly the H-assisted isomerization of fulvene formed from i-/n-C4H5 + C2H2, C3H3 + allyl, and C3H3 + C3H3. Smaller contributions towards benzene formation arise from C4H3 + C2H3, 1,3-C4H6 + C2H3, and potentially via n-C4H5 + C2H2. This diversity of pathways is shown to result nominally from the temperature and the concentrations of benzene precursors present in the benzene-formation zone, which are ultimately due to the feed stoichiometry. (C) 2011 The Combustion Institute. Published by Elsevier Inc. All rights reserved.