Electrochimica Acta, Vol.56, No.3, 1597-1604, 2011
The effect of pH on oxygen and hydrogen peroxide reduction on polycrystalline Pt electrode
Oxygen reduction (ORR) and hydrogen peroxide reduction (HPRR) reactions were studied on polycrystalline Pt by the rotating disc electrode technique in sulphate solutions over the entire pH range. Initial potentials for both ORR and HPRR coincide with the potential region of PtOH formation and shift negatively with the increase of the pH of the solution. For pHs lower than 3.0 and higher than 10.0, the ORR takes place through 4e-series pathways from acid and alkaline solutions, respectively. For 3.0 < pH < 6.0, the overall number of electrons exchanged depends on the potential and falls below 4 for ORR and below two for HPRR. This indicates that both reactions occur in a limited extent due to the changes of the local pH in the course of these reactions which gives rise to the double wave in the polarization curves (as observed for ORR for pH 3.5 and pH 4.0 and for HPRR for pH 4.0). The change of the Tafel slopes with potential indicate the change in reaction pathway from one that takes place in acid - to one that takes place in alkaline solution. (C) 2010 Elsevier Ltd. All rights reserved.