Electrochimica Acta, Vol.56, No.18, 6448-6452, 2011
Facile synthesis of MnO/C anode materials for lithium-ion batteries
Cubic MnO with particle sizes of similar to 200 nm and similar to 600 nm was synthesized by decomposition of MnCO3. The corresponding MnO/C composite was obtained by thermal treatment of mixture of MnCO3 and sucrose. The structure and morphology of the products were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Electrochemical experiments showed that the as-prepared MnO/C exhibited promising electrochemical properties, and could potentially be used as anode material in lithium-ion batteries. MnO/C delivered a reversible capacity of about 470 mAh/g after cycling 50 times, when testing at 75 mA/g. The reversible capacity, when tested at 150, 375, 755 mA/g, reached 440, 320, 235 mAh/g, respectively. The good electrochemical performance was ascribed to the smaller particle size and the efficient carbon coating on MnO. (C) 2011 Elsevier Ltd. All rights reserved.