Electrophoresis, Vol.32, No.18, 2402-2409, 2011
Electrokinetic DNA transport in 20 nm-high nanoslits: Evidence for movement through a wall-adsorbed polymer nanogel
The electrokinetic transport behavior of lambda-DNA (48 kbp) in 20 nm-high fused-silica nanoslits in the presence of short-chain PVP is investigated. Mobility and video data show a number of phenomena that are typical of DNA transport through gels or polymer solutions, thus indicative of rigid migration obstacles in the DNA pathway. Calculations show that a several nanometer thin layer of wall-adsorbed PVP ('nano-gel') can provide such a rigid obstacle matrix to the DNA. Such ultrathin wall-adsorbed polymer layers represent a new type of matrix for electrokinetic DNA separation.