화학공학소재연구정보센터
Energy and Buildings, Vol.43, No.4, 966-970, 2011
The effect of source motion on contaminant distribution in the cleanrooms
In the recent decades, cleanrooms have found growing applications in broad range of industries such as pharmacy and microelectronics. Concerns about negative effects of the contaminant exposure on the human health and product quality motivate many researchers towards understanding of the airflow and contaminant distribution though these environments. With an improvement in computational capacity of the computers, computational fluid dynamics (CFD) technique has become a powerful tool to study the engineering problems including indoor air quality (IAQ). In this research, indoor airflow in a full-scale cleanroom is investigated numerically using Eulerian-Eulerian approach. To evaluate the ventilation system effectiveness, a new index, called final efficiency, is introduced which takes all aspects of the problem into account. The results show that the contaminant source motion and its path have a great influence on the contaminant dispersion through the room. Based on the results, the contaminant distribution indexes, e.g. final efficiency and spreading radius, are improved when the source motion path is in the dominant direction of the ventilation airflow. Consequently, the efficiency of an air distribution system which provides a directional airflow pattern shows the least source path dependency. This study and its results may be useful to gain better understanding of the source motion effects on the indoor air quality (IAQ) and to design more effective ventilation systems. (C) 2010 Elsevier B.V. All rights reserved.