Energy and Buildings, Vol.43, No.11, 3161-3172, 2011
Exergy efficiency analysis in buildings climatized with LiCl-H2O solar cooling systems that use swimming pools as heat sinks
Solar cooling is emerging as one of the most interesting applications in the harnessing of solar energy for alternative uses. Current devices can effectively control the climates of small buildings while addressing the issues associated with the excessive thermal energy captured during the summer months. This article presents an exergy analysis of buildings with solar thermal systems used for Domestic Hot Water (DHW) production and heating and cooling support. The cooling system analyzed is a LiCl-H2O thermally driven heat pump with integral energy storage that uses outdoor swimming pools as heat sink. All subsystems were integrated into the model and considered as a single energy system, and data from installations in three different locations were used. The influences of the heating and cooling demand ratios and the dead state and house temperatures were analyzed. Further, the use of dissipated energy was analyzed, demonstrating that the proposed method facilitates the realistic study of these systems and provides useful analytical tools for improving the overall exergy performance. The energy delivered for heating, cooling and DHW production strongly influences global performance, suggesting that the appropriate sizing of each system is a priority. (C) 2011 Elsevier B.V. All rights reserved.