Applied Chemistry for Engineering, Vol.23, No.1, 18-22, February, 2012
아크릴계 광바인더의 전환율과 열안정성 향상을 위한 공정변수 결정
Determination of Processing Parameters Affecting the Conversion and Thermal Stability of Photocurable Acrylate-based Binder
E-mail:
초록
투명 섬유복합체용 광경화성 바인더로 지환족 골격과 플루오렌계 골격을 갖는 아크릴계 수지 혼합물을 제조하여, 개시제의 종류 및 농도, 광량 등이 바인더의 전환율에 미치는 영향을 조사하였다. ANOVA 분석에 의하면, 바인더의 전환율 증가에는 광량, 개시제의 농도가 주요하였다. 광량에 대해 바인더의 전환율은 거의 선형적으로 증가하였고, 개시제 농도가 증가하게 되면 광량 증가에 따른 전환율 증가는 둔화되었다. FTIR-ATR을 이용하여 측정된 바인더의 평균전환율은 개시제 농도 5 wt%, 광량 5 J/cm2의 조건에서는 87% 수준이었다. 옥심 에스테르계 개시제는 전환율 측면에서는 효과적이었으나, 황변현상을 초래하였다. 광경화 필름은 열처리에 의해 전환율이 증가하고, 휘발성 유기물이 제거되어 열안정성이 향상되었다. 한편, 트리메틸벤조일디페닐포스핀 옥시드와 메틸 벤조일포르메이트 혼합개시제 5wt%, 광량 5 J/cm2 조건에서 광경화된 필름은 230 ℃, 5분 열처리로 TG% (@260 ℃)가 95.4에서 99.0%로 증가하였다.
Photocurable binder for a transparent glass fiber composite was prepared with alicyclic methacrylate and fluorene-based diacrylate. ANOVA (analysis of variance) analysis was used to know main factors affecting the conversion of photocurable binder. It showed radiation intensity and photoinitiator (PI) concentration were main factors. The conversion of photocurable binder was simply increased with radiation intensity. Its increment however was abated with increasing PI concentration. We found that average conversion of the binder measured by FTIR-ATR was 87% when it was exposed to 5 J/cm2 of UV dose with 5 wt% of PI. Oxime ester type PI was very effective to get a high degree of conversion, but it caused a yellowing problem. Owing to post-baking process, UV cured film showed an improved thermal stability by increase of conversion and removal of volatile organic compounds. TG% at 260 ℃ of film cured with 5 wt% of PI(TPO+MBF) and 5 J/cm2 of UV radiation increased from 95.4 to 99.0% by post-baking at 230 ℃ for 5 min.
- MacDonald BA, Rollins K, MacKerron D, Rakos K, Eveson R, Hashimoto K, Rustin B, Flexible Flat Panel Displays, ed. Crawford GP, 11, John Wiley & Sons Inc., Chichester (2005)
- MacDonald WA, J. Mater. Chem., 14, 4 (2004)
- MacDonald WA, Looney MK, MacKerron D, Eveson R, Adam R, Hashimoto K, Rakos K, J. of the SID., 15/12, 1075 (2007)
- Suzuki K, Material Stage., 2, 34 (2002)
- Angiolini S, Avidano M, Bracco R, Barlocco C, Young NG, Trainor M, Zhao XM, SID Symposium Digest Tech Papers., 34, 1325 (2003)
- Choi MC, Wakita J, Ha CS, Ando S, Macromolecules, 42(14), 5112 (2009)
- Yamamoto S, 電子材料., 12, 43 (2007)
- Chen WY, Ko SH, Hsieh TH, Chang FC, Wang YZ, Macromol. Rapid Commun., 27(6), 452 (2006)
- Wang SR, Liang ZY, Gonnet P, Liao YH, Wang B, Zhang C, Adv. Funct. Mater., 17(1), 87 (2007)
- Rao Y, Blanton TN, Macromolecules, 41(3), 935 (2008)
- Jin JH, Ko JH, Yang S, Bae BS, Adv. Mater., 22(40), 4510 (2010)
- JP Patent 2003-195291 (2003)
- U.S. Patent 7,132,154 (2006)
- Sumilite TTR®, Sumitomo Bakelite Co. Ltd., FilmTech Japan (2011)
- JP Patent 2005-350971 (2005)
- Tawada M, J. Photopolym. Sci. Technol., 23, 465 (2010)
- Schwalm R, UV Coatings; Basics, Recent developments and New application, 162, Elsevier, Amsterdam (2007)
- Decker C, Handbook of Polymer Science and Technology, vol. 3,ed. Cheremisinoff NP, 541, Marcel Dekker Inc., New York (1989)
- Studer K, Decker C, Beck E, Schwalm R, Prog. Org. Coat., 48, 92 (2003)
- Scherzer T, Vibr. Spectrosc., 29, 139 (2002)
- Socrates G, Infrared and Raman Characteristic Group Frequencies, 3rd ed., 140, John Wiely & Sons Ltd., Chichester (2001)