Applied Chemistry for Engineering, Vol.23, No.1, 47-52, February, 2012
다공성 및 아민 작용기에 따른 탄소나노섬유의 CO2 감응특성
CO2 Sensing Characteristics of Carbon-nanofibers Based on Effects of Porosity and Amine Functional Group
E-mail:
초록
다공성 탄소나노섬유의 아민 작용기에 따른 CO2 가스 감응특성을 고찰하고자, 아민작용기가 도입된 다공성 탄소나노섬유 기반 CO2 가스센서를 제조하였다. Polyacrylonitrile를 전구체로 하여 전기방사법을 통해 나노섬유를 제조하였으며, 열처리 및 화학적 활성화 공정, 그리고 Diethylenetriamine 액상처리법을 통하여 아민작용기가 도입된 다공성 탄소나노섬유를 제조하였다. BET 비표면적 분석결과, 화학적 활성화법에 의해 최대 2000 m2/g까지 탄소나노섬유의 비표면적이 향상됨을 확인하였으며, FT-IR 분광법을 통해 아민 작용기의 도입을 확인하였다. 아민 작용기가 도입된 가스센서의 CO2 가스 감응특성은 다공성 탄소섬유 기반 가스센서에 비해 약 4배 향상됨을 확인하였다. 결과적으로 화학적 활성화법에 의해 발달된 기공특성과 아민작용기 도입에 따른 화학흡착 유도에 의하여 감응특성이 향상되었음을 확인
하였다.
Porous carbon nanofibers were prepared as a gas sensor electrode to study the CO2 sensing property based on effects of porosity and introduced amine functional groups. Electrospun fibers were obtained by using electrospinning method with polyacrylonitrile precursor and they were treated by the thermal treatment and chemical activation. Amine functional groups were introduced by the liquid state treatment using diethylenetriamine. The specific surface area increased up to 2000 m2/g by the chemical activation. The Introduced amine functional group was identified using FT-IR spectroscopy. CO2 gas sensing property was improved as four folds via introduced amine functional groups on the activated carbon nanofiber. In conclusion, the gas sensing property was improved based on the developed porosity by the chemical activation and the chemical attraction of CO2 gas by introduced functional groups.
- Morio M, Hyodo T, Shimizu Y, Egashira M, Sens. Actuator B-Chem., 139, 563 (2009)
- Kang SC, Im JS, Lee YS, Appl. Chem. Eng., 22(3), 243 (2011)
- Sadaoka Y, Sens. Actuator B-Chem., 121, 194 (2007)
- Kim SJ, J. of the Korean Ins. of Electrical., 19, 405 (2006)
- Sanvito S, Kwon YK, Tomaanek D, Lambert CJ, Phys. Rev. Lett., 84, 1974 (2000)
- Peng S, Cho KJ, Qi PF, Dai HJ, Chem. Phys. Lett., 387(4-6), 271 (2004)
- Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H, Science., 287, 622 (2000)
- Park SJ, Kim KD, Lee JR, J. Korean Ind. Eng. Chem., 9(6), 920 (1998)
- Im JS, Park SJ, Lee YS, J. Colloid Interface Sci., 314(1), 32 (2007)
- Im JS, Park SJ, Kim TJ, Kim YH, Lee YS, J.Colloid Interface Sci., 318, 42 (2008)
- Nataraj SK, Kim BH, Yun JH, Yun DH, Lee DH, Aminabhavi TM, Yang YK, Carbon Lett., 9, 108 (2008)
- Park JY, Lee IH, Bea GN, J. Ind. Eng. Chem., 14, 707 (2006)
- Kim JH, Jeong E, Lee SH, Han WH, Lee YS, Appl. Chem. Eng., 21(3), 311 (2010)
- Holler FJ, Skoog DA, Crouch SR, Principles of Instrumental Analysis., Science plus, 420 (2008)
- Moon J, Park JA, Lee SJ, Zyung T, Kim ID, Sens.Actuator B-Chem., 149, 301 (2010)
- Cho WS, Moon SI, Paek KK, Lee YH, Park JH, Ju BK, Sens. Actuator B-Chem., 119, 180 (2006)
- Suehiro J, Imakiire H, Hidaka S, Ding W, Zhou G, Imasaka K, Hara M, Sens. Actuator B-Chem., 114, 943 (2006)
- Im JS, Kang SC, Lee SH, Lee YS, Carbon., 48, 2573 (2010)
- Jang DI, Cho KS, Park SJ, J. Korean Ind. Eng. Chem., 20(6), 658 (2009)
- Park YW, Separation of CO2 using amine impregnated mesoporous materials, Chungnam National University, Deajeon, Korea (2008)
- Ratnasamy P, Microporous Mesoporous Mat., 90, 314 (2006)
- Kang SC, Im JS, Lee YS, Appl. Chem. Eng., 22, 243 (2010)