화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.18, No.2, 597-603, March, 2012
Kinetics study of CO hydrogenation on a precipitated iron catalyst
E-mail:
The kinetics of the gas-solid Fischer-Tropsch synthesis over a precipitated Fe/Cu/La/SiO2 catalyst was studied in a well mixed, continuous spinning basket reactor. A wide range of synthesis gas conversions have been obtained by varying experimental conditions. Several Langmuir-Hinshelwood-Hougen-Watson type rate equations were derived based on detailed sets of possible reaction mechanisms originating from the carbide, enolic and combined enol/carbide mechanisms. Three models for the Fischer-Tropsch reaction rate were fitted to the experimental reaction rates. Kinetic parameters of models are determined using the genetic algorithm approach (GA), followed by the Levenberg-Marquardt (LM) method to make refined optimization, and are validated by means of statistical analysis. Simulations using the optimal kinetic models derived showed good agreement with experimental data.
  1. Anderson RB, The Fischer-Tropsch Synthesis, Academic Press, Orlando, FL (1984)
  2. Dry ME, in: Anderson JR, Boudart M (Eds.), The Fischer-Tropsch synthesis, Catalysis: Science and Technology, vol. 1, Springer-Verlag, Heidelberg, 159 (1981)
  3. Dry ME, Appl. Catal. A: Gen., 138(2), 319 (1996)
  4. Nakhaei Pour A, Zamani Y, Tavasoli A, Shahri SMK, Taheri SA, Fuel., 87, 2004 (2008)
  5. Bartholomew CH, New Trends in CO Activation, Studies in Surface Science and Catalysis No. 64, Elsevier, Amsterdam (1991)
  6. Nakhaei Pour A, Shahri SMK, Zamani Y, Irani M, Tehrani S, J. Nat. Gas Chem., 17, 242 (2008)
  7. Van der Laan GP, Beenackers AACM, Catal. Rev.-Sci. Eng., 41(3-4), 255 (1999)
  8. Hindermann JP, Hutchings GJ, Kiennemann A, Catal. Rev. -Sci. Eng., 35, 1 (1993)
  9. Li S, Li A, Krishnamoorthy S, Iglesia E, Catal. Lett., 77(4), 197 (2001)
  10. Tao Z, Yang Y, Zhang C, Li T, Wang J, Wan H, Xiang H, Li YW, Catal. Commun., 7, 1061 (2006)
  11. Ngantsoue-Hoc W, Zhang YQ, O'Brien RJ, Luo MS, Davis BH, Appl. Catal. A: Gen., 236(1-2), 77 (2002)
  12. Pour AN, Shahri SMK, Bozorgzadeh HR, Zamani Y, Tavasoli A, Marvast MA, Appl. Catal. A: Gen., 348(2), 201 (2008)
  13. Pour AN, Housaindokht MR, Zarkesh J, Tayyari SF, J. Ind. Eng. Chem., 16(6), 1025 (2010)
  14. Nakhaei Pour A, Husiandoukht MR, Tayyari SF, Zarkesh J, Alaei MR, J. Nat. Gas Sci. Eng., 2, 61 (2010)
  15. Nakhaei Pour A, Zare M, Zamani Y, J. Nat. Gas Chem., 19, 31 (2010)
  16. Nakhaei Pour A, Shahri SMK, Zamani Y, Zamanian A, J. Nat. Gas Chem., 19, 193 (2010)
  17. Nakhaei Pour A, Zare MM, Shahri SMK, Zamani Y, Alaei MR, J. Nat. Gas Sci.Eng., 1, 183 (2009)
  18. Vannice A, Catal. Rev. -Sci. Eng., 14, 153 (1976)
  19. Huff G, Satterfield CN, Ind. Eng. Chem. Proc. Des. Dev., 23, 696 (1984)
  20. Zimmerman WH, Bukur DB, Can. J. Chem. Eng., 68, 292 (1990)
  21. van der Laan GP, Beenackers AACM, Appl. Catal. A: Gen., 193(1-2), 39 (2000)
  22. Teng BT, Chang J, Zhang CH, Cao DB, Yang J, Liu Y, Guo XH, Xiang HW, Li YW, Appl. Catal. A: Gen., 301(1), 39 (2006)
  23. Pirola C, Bianchi CL, Di Michele A, Vitali S, Ragaini V, Catal. Commun., 10, 823 (2009)
  24. van Steen E, Schulz H, Appl. Catal. A: Gen., 186(1-2), 309 (1999)
  25. Yang J, Liu Y, Chang J, Wang YN, Bai L, Xu YY, Xiang HW, Li YW, Zhong B, Ind. Eng. Chem. Res., 42(21), 5066 (2003)
  26. Nakhaei Pour A, Husiandoukht MR, Tayyari SF, Zarkesh J, J. Nat. Gas Chem., 19, 441 (2010)
  27. Nakhaei Pour A, Husiandoukht MR, Zarkesh J, Tayyari SF, J. Nat. Gas Sci. Eng., 2, 79 (2010)
  28. Nakhaei Pour A, Husiandoukht MR, Tayyari SF, Zarkesh J, J. Nat. Gas Chem., 19, 362 (2010)
  29. Pour AN, Housaindokht MR, Tayyari SF, Zarkesh J, Shahri SMK, Chem. Eng. Res. Des., 89(3A), 262 (2011)
  30. Atkinson AC, Donev AN, Optimum Experimental Designs, Oxford University Press (1992)
  31. Pour AN, Housaindokht MR, Tayyari SF, Zarkesh J, Alaei MR, J. Mol. Catal. A-Chem., 330(1-2), 112 (2010)
  32. Davis BH, Catal. Today., 141, 25 (2009)