화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.18, No.2, 642-647, March, 2012
Improved capacitance characteristics of activated carbon-based electrodes by physicochemical base-tuning
E-mail:
To improve the electrochemical performance of an activated carbon (AC)-based electric double-layer capacitor (EDLC), the AC surface, which is used as an electrode, was modified using physicochemical base tuning that uses different concentrations of ammonium hydroxide. The effect of the treatment on the surface and electrochemical properties of the AC electrodes was investigated. The specific capacitance of a 13 vol%-solution-treated sample was increased to 385 F/g at a scan rate of 5 mV/s, which was 17% higher than the value of 328 F/g obtained for the untreated samples. This increase can be attributed to an increase in the mesopore volume ratio due to the etching effect of the reaction between the carbon surfaces and ammonium hydroxide. Moreover, nitrogen functional groups, which were introduced by the treatment, also improved the electrochemical properties of the resulting AC-based electrode. Therefore, a simultaneous etching and nitrogen-introducing method with ammonium hydroxide can easily introduce nitrogen functional groups on the surface of an AC electrode. This method is very effective for preparing AC for use in an EDLC with improved electrochemical properties.
  1. Pognon G, Brousse T, Be´ langer D, Carbon., 49, 1340L
  2. Lota G, Centeno TA, Frackowiak E, Stoeckli F, Electrochim. Acta, 53(5), 2210 (2008)
  3. Sun JK, Um EH, Lee CT, Appl. Chem. Eng., 21(1), 11 (2010)
  4. Tanaike O, Futaba DN, Hata K, Hatori H, Carbon Lett., 10, 90 (2009)
  5. Zhang LL, Zhao XS, Chem. Soc. Rev., 38, 2520 (2009)
  6. Barbieria O, Hahna M, Herzog A, Ko¨ tza R, Carbon., 43, 1303 (2005)
  7. Abdullah ID, Girgis BS, Tmerek YM, Badawy EH, Carbon Lett., 11, 192 (2010)
  8. Frackowiak E, Lota G, Machnikowski J, Vix-Guterl C, Beguin F, Electrochim. Acta, 51(11), 2209 (2006)
  9. Kim YJ, Ave Y, Yanagiura T, Park KC, Shimizu M, Iwazaki T, Nakagawa S, Endo M, Dresselhausd MS, Carbon., 45, 2116 (2007)
  10. Kodama M, Yamashita J, Soneda Y, Hatori H, Kamegawa K, Moriguchi I, Chem. Lett., 35(6), 680 (2006)
  11. Kodama M, Yamashita J, Soneda Y, Hatori H, Kamegawa K, Carbon., 45, 1105 (2007)
  12. Kawaguchi M, Itoh A, Yagi S, Oda H, J. Power Sources, 172(1), 481 (2007)
  13. Seredych M, Hulicova-Jurcakova D, Lu GQ, Bandosz TJ, Carbon., 46, 1475 (2008)
  14. Conway BE, Electrochemical Supercapacitors-scientific Fundamentals and Technological Applications, Kluwer Academic Plenum Publishers, New York (1999)
  15. Hu CC, Wang CC, J. Power Sources, 125(2), 299 (2004)
  16. Hsieh CT, Teng H, Carbon., 40, 667 (2004)
  17. Hulicova-Jurcakova D, Seredych M, Jin Y, Lu GQ, Bandosz TJ, Carbon., 48, 1767 (2010)
  18. Gohel A, Chin KC, Zhu YW, Sow CH, Wee ATS, Carbon., 43, 2530 (2005)
  19. Ghosh P, Tanemura M, Soga T, Zamri M, Jimbo T, Solid State Commun., 147, 15 (2008)
  20. Little TW, Ohuchi FS, Surf. Sci., 445, 235 (2000)
  21. Rathore RS, Srivastava DK, Agarwal AK, Verma N, J. Hazard. Mater., 173(1-3), 211 (2010)
  22. Xu L, Guo J, Jin F, Zeng H, Chemosphere., 62, 823 (2006)
  23. Popov C, Plass MF, Bergmaier A, Kulisch W, Appl. Phys. A., 69, 241 (1999)
  24. Mangun CL, Benak KR, Economy J, Foster KL, Carbon., 39, 1809 (2001)
  25. Raymundo-Pinˇ ero E, Cazorla-Amoro´ s D, Linares-Solano A, Carbon., 41, 1925 (2003)
  26. Gregg SJ, Sing KSW, Adsorption Surface Area and Porosity, second ed., Academy Press, London (1982)
  27. Jeong E, Jung MJ, Cho SH, Lee SI, Lee YS, Colloid Surf. A: Physicochem. Eng.Asp., 377, 243 (2011)
  28. Kim ND, Kim W, Joo JB, Oh S, Kim P, Kim Y, Yi J, J. Power Sources, 180(1), 671 (2008)
  29. Frackowiak E, Be´ guin F, Carbon., 39, 937 (2001)
  30. Xing W, Qiao SZ, Ding RG, Lid F, Lu GQ, Yan ZF, Cheng HM, Carbon., 44, 216 (2006)
  31. Gryglewicz G, Machnikowski J, Lorenc-Grabowska E, Lota G, Frackowiak E, Electrochim. Acta, 50(5), 1197 (2005)