화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.18, No.2, 715-719, March, 2012
Enhancing hydrogen production efficiency in microbial electrolysis cell with membrane electrode assembly cathode
E-mail:
Microbial electrolysis cell is a device which can produce hydrogen gas from biomass through microbial catalyzed process and thus reduce the organic matter. For the real application in wastewater treatment, the scale-up of microbial electrolysis cell is an important issue but few tests were conducted with relatively large size. In this study, a 3.7 L microbial electrolysis cell (liquid volume 3.2 L) equipped with a membrane electrode assembly cathode was designed and tested. The internal resistance was examined, hydrogen generation and organic removal performance was investigated under different conditions. A maximum overall hydrogen efficiency of 41% was achieved at an applied voltage of 1.2 V with acetate as substrate, corresponding to a volumetric hydrogen production rate of approximately 0.12 m3 H2/m3 reactor liquid volume/day. The results obtained in this study could help to further develop pilot-MEC for practical applications.
  1. Chaudhuri SK, Lovley DR, Nat. Biotechnol., 21, 1229 (2003)
  2. Oh S, Logan BE, Water Res., 39, 4673 (2005)
  3. Scholz F, Schro¨ der U, Nat. Biotechnol., 21, 1151 (2003)
  4. Rabaey K, Verstraete W, Trends Biotechnol., 23, 291 (2005)
  5. Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W, Appl. Environ.Microbiol., 70, 5373 (2004)
  6. Jia YH, Tran HT, Kim DH, Oh SJ, Park DH, Zhang RH, Ahn DH, Bioprocess.Biosyst. Eng., 31, 315 (2008)
  7. Aelterman P, Rabaey K, Pham HT, Boon N, Verstraete W, Environ. Sci. Technol., 40, 3388 (2006)
  8. Li ZL, Yao L, Kong LC, Liu H, Bioresour. Technol., 99(6), 1650 (2008)
  9. Zhao F, Harnisch F, Schroder U, Scholz F, Bogdanoff P, HerrmannI I, Environ. Sci.Technol., 40, 5193 (2006)
  10. Liu H, Grot S, Logan BE, Environ. Sci. Technol., 39, 4317 (2005)
  11. Bond DR, Holmes DE, Tender LM, Lovley DR, Science., 295, 483 (2002)
  12. Logan BE, Call D, Cheng S, Hamelers HVM, Sleutels THJA, Jeremiasse AW, Rozendal RA, Environ. Sci. Technol., 42, 8630 (2008)
  13. Miyake J, Miyake M, Asada Y, J. Biotechnol., 70, 89 (1999)
  14. Hussy I, Hawkes FR, Dinsdale R, Hawkes DL, Biotechnol. Bioeng., 84(6), 619 (2003)
  15. Jeong TY, Cha GC, Yeom SH, Choi SS, J. Ind. Eng. Chem., 14(3), 333 (2008)
  16. Rashid N, Song W, Park J, Jin HF, Lee K, J. Ind. Eng. Chem., 15(4), 498 (2009)
  17. Clauwaert P, Verstraete W, Appl. Microbiol. Biotechnol., 82(5), 829 (2009)
  18. Hu H, Fan Y, Liu H, Int. J. Hydrogen Energy., 34, 8535 (2009)
  19. Liu H, Logan BE, Environ. Sci. Technol., 38, 4040 (2004)
  20. Kim JR, Premier GC, Hawkes FR, Dinsdale RM, Guwy AJ, J. Power Sources, 187(2), 393 (2009)
  21. Lee J, Phung NT, Chang IS, Kim BH, Sung HC, FEMS Microbiol. Lett., 223, 185 (2003)
  22. Call D, Logan BE, Environ. Sci. Technol., 42, 3401 (2008)
  23. Logan BE, Hamelers B, Rozendal R, Schroder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K, Environ. Sci. Technol., 40, 5181 (2006)
  24. Rozendal RA, Hamelers HVM, Molenkamp RJ, Buisman CJN, Water Res., 41, 1984 (2007)
  25. Tartakovsky B, Manuel MF, Wang H, Guiot SR, Int. J. Hydrogen Energy., 34, 672 (2009)
  26. Zhang X, Cheng S, Huang X, Logan BE, Bioresour. Technol., 25, 1825 (2010)